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ABSTRACT

Sonar operators are of great importance for identifying potential threats to sub-

marines, making use of underwater acoustic signatures obtained by passive sonar

systems. Automatic classification models can alleviate the physical and mental

burden of sonar operators improving their job performance. However, the develop-

ment of these models often requires a database containing a large number of vessels,

which is impractical due to the related operational costs and the confidential nature

of data of this kind. Thus, it is necessary to develop models able to differentiate

between known and unknown classes of vessels. In particular, this work proposes to

address this task using class-specialized novelty detectors. It encompasses a com-

prehensive study, including Machine Learning techniques commonly adopted in the

literature and some others not so well explored, such as the specialized Siamese

Neural Networks. The experiments include techniques such as Neural Networks,

Gaussian Mixture, k-means, kNN, OneClass SVM, among others, in general and

class-specialized topologies. For this, we explored a dataset provided by the IPqM,

integrating 8 classes of vessels. The figure of merit used to evaluate the techniques

was the Area Under Curve (AUC) relative to the Receiver operating characteristic

(ROC) curve. The best approach was a class-specialized arquitecture based on the

Gaussian Mixture using a diagonal-type covariance matrix, which attained a value

of AUC of 0.9602 for a simulation scenario with three known classes.

Key-words: Novelty detection, Passive Sonar System, Machine Learning.
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RESUMO

Os operadores de sonar são de grande importância para identificar potenciais

ameaças aos submarinos, fazendo uso de assinaturas acústicas subaquáticas obtidas

por sistemas de sonar passivo. Os modelos de classificação automática podem ali-

viar a carga f́ısica e mental dos operadores de sonar, melhorando seu desempenho

no trabalho. No entanto, o desenvolvimento desses modelos muitas vezes requer

um banco de dados contendo um grande número de embarcações, o que é inviável

devido aos custos operacionais relacionados e ao caráter confidencial de dados desse

tipo. Assim, é necessário desenvolver modelos capazes de diferenciar entre classes

conhecidas e desconhecidas de embarcações. Em particular, este trabalho propõe

abordar esta tarefa usando detectores de novidades especializados em classes. É re-

alizado um estudo abrangente, que contempla técnicas de Aprendizado de Máquina

comumente adotadas na literatura e algumas outras pouco exploradas, como as Re-

des Neurais Siamesas especializadas. Os experimentos incluem técnicas como Redes

Neurais, Mistura de Gaussianas, k-means, kNN, OneClass SVM, entre outras, em

topologias de classes gerais e especializadas. Para isso, exploramos um conjunto de

dados fornecido pelo IPqM, que integra 8 classes de embarcações. A figura de mérito

utilizada para avaliar as técnicas foi a Área sob a Curva (AUC) em relação à curva

ROC (Receiver Operating Characteristic). A melhor abordagem foi uma arquitetura

classe-especializada baseada em Mistura de Gaussianas usando uma matriz de co-

variância do tipo diagonal, que atingiu um valor de AUC de 0.9602 para um cenário

de simulação com três classes conhecidas.
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ACRONYMS

kNN - k-Nearest Neighbors

LOF - Local Outlier Factor

ACS - Automatic Classification Systems

NNd - Nearest Neighbor Density

IPqM - Instituto de Pesquisas da Marinha Brasileira (Brazilian Navy Research

Institute)

TPSW - Two-Pass Split Windows

ODIN - Out-of-DIstribution detector for Neural networks

LSTM - Long Short-Term Memory

PCA - Principal Component Analysis

KPCA - Kernel Principal Component Analysis

SVM - Support Vector Machine

GMM - Gaussian Mixture Models

SNN - Siamese Neural Network

SONAR - SOund NAvigation and Ranging

ROC - Receiver Operating Characteristic

AUC - Area under ROC curve

NSD - Non-Specialized Detector
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Chapter 1

Intoduction

The passive sonar system is frequently used by submarines to monitor aquatic

noises in military patrol activities. Through this system, the vibrations emitted

by propulsion systems of other vessels are captured by an array of hydrophones

and processed to extract their tonal and spectral characteristics. Subsequently,

this information is analyzed by trained professionals to classify the vessel’s acoustic

signature.

The automation of this process is relevant, as it can reduce the physical and

mental burden of the operator, turning easier the surveillance effort while increasing

the reliability of the process of decision making. Typically, automatic classification

systems (ACS) are built considering a limited number of classes of vessels. Thus, the

existence of mechanisms for identifying those not contemplated during the system’s

development is of paramount importance. In other words, ACS must be capable of

detecting novelties in this context.

This work aims to discuss the development of highly efficient and reliable detec-

tors of unknown classes of vessels, considering the exploitation of class-specialized

subsystems. The Machine Learning models considered for identifying new scenarios

do not make use of any information about the unknown concept. Therefore, the

strategy adopted by the models is inferring how discrepant a new scenario is from

those already known, seeking to operate with an attractive trade-off between the

rates of recognition of what is new and what is unknown.
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The structure of this work is the following: Chapter 2 introduces the concepts of

novelty detection and briefly covers the Machine Learning techniques considered in

this work. Chapter 3 describes the dataset used in the experiments and the figures

of merit exploited for evaluating the models. Chapter 4 presents the results. Finally,

in Chapter 5, the conclusions are discussed. Appendix A discusses in more detail the

process of hyperparameter selection and the training strategies considered for the

Machine Learning techniques. Appendix B summarizes the publications associated

with the development of this work.
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Chapter 2

Novelty detection

The objective of this chapter is to briefly contextualize the process of novelty

detection. In other words, how to distinguish if a given sample represents a novelty

or not. For that, first, the definition of novelty and novelty detection is given. In the

following, some class-specialized topologies for novelty detection and the Machine

Learning techniques to address this problem are covered.

2.1 Novelty

The novelty detection is essentially a pattern recognition task. In this work’s

context, it corresponds to recognizing if some data provenient from an arbitrary

class is not present in the original dataset. Naturally, for a novelty occurrence, the

features observed must be sufficiently different from those from other dataset classes.

The literature points out two terms often confused with novelty detection: anomaly

and outliers [9].

Novelty refers to something new, for instance, a class of vessel never seen before.

An anomaly or an outlier refers to samples that are not necessarily new but that

exhibit a significant discrepancy with respect to those related to some process of

interest. The main aspect behind an anomaly or an outlier is the idea of a pattern

that is not so common, for example a wrong measurement or some manufacturing

process failure.

3



Despite the conceptual differences between novelty detection, anomaly and outlier

detections, the algorithmic procedure is basically the same, consisting of producing

a dissimilarity score and comparing it with some previous established threshold.

2.2 Novelty Detection

As said before, the novelty detection is basically the act of comparing a novelty

score with a decision threshold [9]. The decision threshold may be easily obtained by

evaluating this novelty score over the database, and setting it to match some specific

percentile from the experimental novelty score distribution. Thus, samples whose

novelty scores are greater than the decision threshold will be assumed as novelties,

otherwise as known.

Naturally, the decision threshold must be chosen considering the fact that some

percentage of the dataset instances will be wrongly classified as novelties. For ins-

tance, if it is chosen a decision threshold matching the 95° percentile of the dataset

novelty score distribution, a total of 5% of such instances will be wrongly classified

as novelties.

The relation between the decision threshold choice and the novelty detection per-

formance can be better understood through the graphical example depicted in Fi-

gure 2.1. In this figure, there are two distributions of some novelty score. The blue

one represents the values obtained with the known dataset; while the red, with the

unknown dataset. The purple region between both distributions represents errors

regarding novelty detection. If the decision threshold is moved to the right, the

number of unknown samples wrongly classified as known will increase. The same

goes if the decision threshold is moved to the opposite direction, leading the number

of known samples wrongly classified as novelties to increase.

A novelty detector is composed by a novelty score generator, a decision threshold,

and a decision maker. This architecture can be seen in Figure 2.2. Basically, the

novelty score generator is a mathematical model that receives some pre-processed

data as input and generates a novelty score. This novelty score s is then compared

4



Figure 2.1: Scores distribution

with a decision threshold λ integrating the decision-maker block, whose output must

be one for novelties and zero for non-novelties.

Figure 2.2: General novelty detection architecture (extracted from [1]).

2.3 Class-specialized Topologies for Novelty De-

tection

The class-specialized novelty detector requires the use of multiple novelty score

generators, each one designed to recognize only the class of its expertise, besides

multiple decision thresholds settled using the validation set; thus, it differs from

the Non-specialized topology to which only one novelty score generator is designed

to recognize multiple classes [1]. There are some advantages of this specialization,

one of them is the fewer amount of data used in each model training phase. It is
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important to note that, for many models, the training phase may have an extremely

high computing complexity and involves a high number of training instances that

may result in an extensive processing time. Additionally, in techniques like the kNN

[10], to which the novelty score generation process for a single instance requires the

evaluation of all the training dataset, larger datasets may increase substantially the

classification time. Besides, the detector specialization in classes tends to produce

novelty score generators that better describe more specific nuances in data.

In this work two class-specialized topologies will be evaluated and compared with

the Non-specialized approach, which is the default practice in the literature [5], here

denoted as: Hierarchical, Unanimous, and Non-specialized [1].

2.3.1 The Non-specialized topology

The here so-called Non-specialized topology is simply the novelty detector archi-

tecture featured in Figure 2.2 applied to recognize multiples classes, i.e., assuming

unique training and validation sets composed of multiple classes.

2.3.2 The Hierarchical topology

The Hierarchical topology makes use of a classifier to select a specialized novelty

detector, i.e., one detector especially tailored for recognizing the class of its expertise.

This means that this classifier has the role of identifying the most likely class that

the data under analysis must be provenient. Therefore, the classifier model must be

trained to recognize the known classes. As a result, the novelty detector selected for

some unknown data will correspond to the one with more features in common with

the data under analysis. This architecture can be seen in Figure 2.3.

2.3.3 The Unanimous topology

In the Unanimous topology, novelty detectors of each class work in parallel, pro-

ducing an output that is either one (novelty) or zero (non-novelty). When all novelty

detectors’ outputs agree regarding novelty, the data under analysis is assumed to

be a novelty. If at least one of the detectors disagrees, the novelty hypothesis is

6



Figure 2.3: Hierarchical novelty detection system architecture (extracted from

[1]).

refused. Thus, the fusion mechanism is basically a logical and operation involving

all the novelty detector outputs. This topology can be seen in Figure 2.4.

Figure 2.4: Unanimous novelty detection system architecture (extracted from

[1]).

2.4 Machine Learning techniques

To generate the novelty scores, Machine Learning (ML) techniques responsible

for mapping the input vector into some novelty score space will be explored. For

instance, if a specific technique reconstructs the original data, the reconstruction

error may represent a possible novelty score, since it is expected that samples from

the same class of the detector expertise must obtain a lower reconstruction error

than the ones from alternative classes.

7



To design a novelty detector, at least two datasets are necessary: one for training

and another for validating the model(s). Using the training dataset, the algorithm

will learn some task from the experience stored in data, where learning refers to

the act of acquiring the ability to perform some task [11]. In the case, based on

the training dataset, the Machine Learning model will produce some function to

generate the novelty score. In turn, the validation dataset will be explored to define

one or more decision thresholds or model’s hyperparameters required.

The performance of a ML model as a good novelty score generator is directly re-

lated to the algorithm chosen and the associated hyperparameters, when applicable.

Roughly, a poor choice of hyperparameters can drastically reduce its performance,

thus searching for one or more optimal hyperparameters may be of a paramount

importance in these cases.

There are many ML techniques capable of generating novelty scores, but this work

will concentrate only in a few of them, based on the results of [2], which have led

us to focus on instance-based approaches, like kNN, LOF, and NNd [12], as well as

some alternatives, such as One-Class SVM [[13], [14], [15]], k-means[[16], [17]], and

KPCA [[18], [19], [20]]. Besides, there are some approaches originally evaluated in

this problem by this work that include Siamese Neural Networks [[21], [22], [23]] and

LSTM-based Autoencoder [1].

2.4.1 kNN

The k -Nearest Neighbors (kNN) is a simple Machine Learning technique based

on the geometrical distance from a data under test to its nearest neighbors from the

training set [10]. These distances are explored to produce some statistics over this

data, typically the median, which is then used as a novelty score[12]. This implies

that for an instance from a known class, the median distance must be smaller than

that for an instance from a unknown class, based on the premise that instances from

a same class tend to be spatially close due to the similarity between their features.

A common variant of this algorithm considers the mean instead of the median.
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Figure 2.5 illustrates how the kNN algorithm works considering three neighbors

(k = 3). The circle symbol represents instances from the training set, while the star

symbol represents an instance of the same class as the training set but that is under

evaluation (test instance). The triangle instance is the furthest away instance, thus

it represents a novelty. The pentagon may be classified as normal as it is somewhat

close to the class data, depending on the decision threshold settled, as it can also

be classified as a novelty.

Figure 2.5: Demonstration of kNN (adapted from [2]).

The unique kNN’s hyperparameter tuned in the experiments was the number of

neighbors, as it was considered the Euclidean distance.

2.4.2 LOF

The Local Outlier Factor (LOF) technique is based on a comparison between the

local density of data with the densities from its nearest neighbors, thus it assumes

that a novelty(originally, an outlier) is represented by an instance whose density

differs from the ones of its neighbors [24].

The concept of local density, in accordance with [3], can be better understood

by Figure 2.6, wherein the blue circle represents a novelty data, and the red circles

9



correspond to normal data. In this plot, the unfilled circles belong to the training

set and the filled ones to the test set. Considering k = 3, the local densities are

represented by the dashed circles. Notably, the radius related to the novelty data is

bigger than of the normal data.

Figure 2.6: Local density of two different data instances (adapted from [3])

The reachability distance of a data under novelty evaluation x from a data in the

training set y is given by Eq. (2.1), wherein dist(x,y) is the Euclidean distance

between x and y, and distk(y) the Euclidean distance between y and its kth neigh-

bor. Thus, the reachability distance is the maximum between these two distances

as follows [3]

dak(x,y) = max{distk(y), dist(x,y)}. (2.1)

The local reachability density, which is given by the Eq. (2.2) where #Nk the

cardinality of the set with all neighbors with distance equal or lower than distk(x),

expresses how far an instance must be from x to reach the nearest data. This means

that greater distances would correspond to sparse and less dense regions [3].

dalk(x) =
#Nk(x)∑

y∈Nk(x)
dak(x,y)

. (2.2)
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The LOF score is defined in terms of dalk(x) as follows

s = LOFk(x) =
1

#Nk(x)

∑
y∈Nk(x)

dalk(y)

dalk(x)
. (2.3)

A LOF score higher than 1 indicates that the instance represents a novelty, while

the opposite means that it must belong to a known data class [12]. The LOF’s

hyperparameter considered here is the number of neighbors.

2.4.3 NNd

The Nearest Neighbor Density (NNd) technique is a novelty score based on the

ratio between two distances: the numerator corresponding to the distance between

the data under analysis and its kth nearest neighbor from the training set, denoted

as NN tr
k (x), and the denominator given by the distance between this kth nearest

neighbor and its corresponding nearest neighbor NN tr
1 (NN tr

k (x)) [25], as expressed

in Eq. (2.4). Lower score values are related to instances from a known class [25].

The NNd hyperparameter is given by the value of k.

s =
dist(NN tr

k (x))

dist(NN tr
1 (NN tr

k (x)))
. (2.4)

2.4.4 One-Class SVM

The One-Class SVM is a classical SVM algorithm variant targeting one-class clas-

sification. In this case, the classifier learns how to maximally separate training data

from the origin, a place where the novelties are supposed to be, using a hyperplane

with a maximum margin [26]. To obtain this hyperplane, Schölkopf [27] proposed

the cost function described in Eq. (2.5), where ν is the margin violation penalizing

factor, such that ν ∈ (0, 1]; n is the number of instances in the training set; ξi are

slack variables to account for the margin violations, and ϕ(.) is some non-linear in-

trinsic high-dimensional mapping function. It is expected that the values of w and

ρ that solve the problem will establish a positive decision function for most of the

instances in the training set [26].
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min
w, ξi, ρ

1

2
∥w∥2 + 1

νn

n∑
i=1

ξi − ρ,
subject to: ⟨w, ϕ(xi)⟩ ≥ρ− ξi,∀i

ξi ≥ 0,∀i
(2.5)

This algorithm exploits the kernel trick to avoid the need of explicit high-dimensional

data mappings into the feature space, thus allowing an effective data classification

by using simple linear classifiers that operate in this space. Some kernel functions

are RBF, Linear and Polynomial, where Eq. (2.6) exhibits the RBF case considering

two feature vector instances x1 and x2, wherein σ is a hyperparameter to be settled

in the experiments.

κ(x1,x2) = e−
||x1−x2||

2
2

2σ . (2.6)

The major difference from this technique to the others is that the resulting model

is strongly tied with the ν parameter, related to the percentage of data in the training

set that is assumed as novelty a priori.

2.4.5 KPCA

The KPCA (Kernel Principal Components Analysis) is a non-linear extension of

the Principal Component Analysis (PCA) that assumes a implicit non-linear trans-

formation applied to the dataset instances [28]. PCA is a statistical method that

produces an orthogonal linear transform responsible for mapping correlated obser-

vations into uncorrelated observations [29]. The geometric interpretation is that this

transform will be defined in terms of directions known as the principal components

that are mutually orthogonal. Over these directions, the data is projected, such

that the variance of the corresponding projections are maximum, resulting in an op-

timal linear compression [29]. KPCA extends PCA operation to a high-dimensional

feature space expanding these projections using a kernel function [18].

Novelty detection based on KPCA employs the reconstruction error as the novelty

score, as expressed in Eq. (2.7), wherein ∥Φ̃∗∥2 is given by Eq. (2.8), the vector

x is the instance under novelty evaluation, N is the training set size, κ(X∗,X∗)

represents the kernel function, K is the Gram matrix, V is related to the SVD
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decomposition of the Gram matrix, the vector ∥z∗∥2 is provided by Eq. (2.9), and

k∗ = [k(x1,x∗), k(x2,x∗), ..., k(xn,x∗)] is the empirical kernel mapping [2].

∥e∗∥2 = ∥Φ̃∗ − Φ̂∗∥2 = ∥Φ̃∗∥2 − ∥z∗∥2. (2.7)

∥Φ̃∗∥2 = k(X∗,x∗)−
2

N

N∑
i=1

k(X∗,xi) +
1

N2

N∑
j=1

N∑
i=1

k(xi,xj). (2.8)

∥z∗∥2 = VTk∗. (2.9)

The KPCA hyperparameter is the number of columns of V, which is related to

some percentage of the explained variance retained in Φ̂∗ .

2.4.6 k-Means

The k -Means is a simple and fast iterative clustering method whose the goal is

splitting data into a specified number of clusters defined by the value of k [30]. It

is initialized by randomly selecting the centers of the presumed k clusters. After

that, each dataset instance is assigned to its nearest center, using the Euclidean

distance. Then, all cluster centers are updated to the value of their centroids. This

process is repeated until no change is observed in the cluster centers. The cost

function associated to the k-means algorithm is presented in Eq. (2.10), wherein

the vector x represents the data under analysis, and xi corresponds to the centroid

of the cluster Ci [30]

E =
k∑

i=1

∑
x∈Ci

||x− xi||22. (2.10)

The novelty score for the k-Means algorithm is the Euclidean distance between the

data under analysis and its closest centroid. Thus, this method’s hyperparameter is

the number of clusters.

2.4.7 Gaussian Mixture Models

The Gaussian Mixture Models (GMM) are probabilistic models that assume a

data distribution composed by a linear combination of Gaussians [31], as depicted
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in Eq. (2.11), where ℵ(x|µk,Σk) represents the kth Gaussian distribution that

integrates the mixture, with mean µk and covariance Σk, as described in Eq. (2.12)

[3].

p(x) =
K∑
k=1

πkℵ(x|µk,Σk). (2.11)

ℵ(x|µk) =
1

(2π)N/2|Σm|1/2
exp(

−1

2
(x− µm)TΣm

−1(x− µm)). (2.12)

The following covariance matrix forms can be assumed [2]:

1. Spherical: It is given by Σk = σ2
kI, thus it assumes that the base distributions

are isotropic.

2. Diagonal: It is given by Σk = diag(σk)
2, wherein the base distributions are

the same but each dimension may have a particular variance.

3. Full: It is given by arbitrary multivariate Gaussian distributions, one to each

member of the mixture, representing the most general case.

4. Tied: It is given by Σk = Σ, thus the covariances are arbitrary but shared by

all distribution members.

The difference between these premises are illustrated in Figure 2.7 for a hypothe-

tical distribution.

The GMM training is based on the Expectation-Maximization algorithm, typically

used for deriving maximum likelihood solutions [31]. The novelty score for GMM

is the log-likelihood. The hyperparameters correspond to the type of covariance

assumed and the number of Guassians that integrate the mixture.

2.4.8 Autoencoder

The Autoencoder is an artificial neural network that aims to learn some non-linear

data mapping into a reduced-dimensional latent space, such that the data can be

mapped back to the original data space with the lowest possible reconstruction error

[32].
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Figure 2.7: Illustration of the different assumptions over the covariance matrix

format for an hypothetical distribution example (extracted from [4]).

Basically, two components integrates an Autoencoder: the encoder part, whose

task is mapping the data to this latent space; and the decoder, responsible for the

inverse mapping, i.e., for reconstructing data into the original data space. Encoder

and decoder parts are implemented by one or more network layers; thus, the flow

of information is Hierarchical. For convenience, a standard procedure is adopting

symmetric encoding and decoding layers [1]. Figure 2.8 depicts an Autoencoder

network architecture with symmetric encoding and decoding layers.

Neural Networks’ training requires the optimization of parameters, like weight

and bias, using some optimization algorithm, such as ADAM [33] or SGD [34], tar-

geting to minimize(or maximize) some loss function. Autoencoders often exploit the

squared reconstruction error computed between the reconstructed and the original

data as the loss function for training. Similarly, the reconstruction error is used as

novelty score. The premise is that this error will be lower for instances belonging

to the class(es)to which the Autoencoder was trained upon, since it learns how to

represent this data in a compact form.

An interesting variant of the standard Autoencoder is the LSTM-based Autoenco-

der, which uses LSTM cells instead of perceptrons, a well-known approach in models

that process data sequences [1].
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Figure 2.8: Symmetric auto-encoder architecture (adapted from [5]).

LSTM stands for Long Short-Term Memory [35]. It is a recurrent neural network

composed by cells. Each cell is responsible for storing some state and has three

gates controlling the information flow. The cell acts as a memory, allowing old input

values to be remembered after arbitrary time intervals [1]. LSTM units include a

input gate, a forget gate, and a output gate. The input gate defines how the current

input and hidden state values would impact in the current state update. The forget

gate decides how much of the information stored in the cell should remain after an

update. Finally, the output gate responds for how much of the hidden state must

accompany the current cell state value. The Figure 2.9 depicts a LSTM cell.

The LSTM feedforward equation are given by:

i(t) = σ(Wxix
(t) +Whih

(t−1) +Wcic
(t−1) + bi), (2.13)

f (t) = σ(Wxfx
(t) +Whfh

(t−1) +Wcfc
(t−1) + bf ), (2.14)

o(t) = σ(Wxox
(t) +Whoh

(t−1) +Wcoc
(t−1) + bo), (2.15)
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Figure 2.9: Representation of the LSTM cell(extracted from [6]).

h(t) = o(t) ⊙ ψ(c(t)), (2.16)

c(t) = f (t) ⊙ c(t−1) + i(t)ψ(Wxcx
(t) +Whch

(t−1) + bc). (2.17)

where x(t) is the input vector; f (t) is the forget gate’s activation vector; i(t) is the

input gate’s activation vector; o(t) is the output gate’s activation vector; h(t) is the

hidden state vector, also known as the output vector; c(t) is the cell state vector; W

are weight matrices related to the gates and internal cell processing; b are bias vectors

shared across multiple-time steps within a same layer; σ is the sigmoid activation

function used in the three gates; ψ is an activation function initially defined as the

hyperbolic tangent but that can be arbitrary chosen [1]. The dimensionality of the

all these vectors are referred as the number of LSTM units.

The hyperparameters of a LSTM Autoencoder are the number of LSTM units, the

number of LSTM layers, and the activation function of each layer. It is a hard task

to optimally determine the best number of layers to each model. This work adopted
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a greedy approach: new layers are inserted in the model until its performance starts

to level off. Besides, for each layer added, optimal hyperparameters are identified

and kept frozen in the subsequent experiments. To avoid overfitting and increase

the model generalization, the concept of denoising Autoencoder [36] was explored.

This strategy consists of adding zero-mean random Guassian noise to the network

inputs. As a result, the resulting model becomes more robust, since the Autoencoder

must reconstruct it based on a corrupted version the original data instance. Another

strategy explored was the dropout [37] which simply consists of randomly dropping

some neurons (LSTM units) during training. The hyperparameters in this case are

the dropout rate and the standard deviation of the noise added to the network

inputs.

2.4.9 Siamese Neural Networks

Siamese Neural Networks (SNNs) is an architecture composed by two or more

neural networks with shared parameters dedicated to solving some task [38]. The

main SNN goal is similarity learning, i.e., this network learns low-dimensional input

data mappings to which the similarity or dissimilarity between input data instances

are somewhat enhanced. Therefore, this technique requires contrasting data, which

restricts its use only to class-specialized detectors, since it demands the existence

of class and non-class instances beforehand, here referred as positive and negative

datasets, respectively.

Figure 2.10 illustrates an arbitrary SNN architecture composed by two networks

(with inputs x1 e x2) having N1 neurons in the input layer and N2 neurons in the

second layer. Note that the weights from both networks are the same. The SNN

can have two or more input vectors provenient from the same or from different

classes. For each pair of inputs, SNN encodes them through its hidden layers,

producing two outputs that correspond to specific embeddings for these inputs.

Then, the difference between these embeddings is processed by a distance layer that

essentially computes the distance between them. Depending on the type of data

that is fed to this architecture, the optimization of this loss function will affect this

distance. Note that the optimization of this loss function targets to minimize the
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distance from input vector mappings that are from the same class and maximize

those from different classes. As a result, the model produces output vectors with

higher distances when submitted to input vectors from different classes, while smaller

distances for input vectors that belong to the particular class used in its train step.

Figure 2.10: An illustration of the SNN architecture (extracted from [7]).

To train a SNN it is necessary dispose of two training sets: one for the positive

samples and another for the negative samples. In this work, the positive set will

correspond to the class of detector expertise, while the negative set will be composed

by the others known classes of the system.

The triplet loss [39] was the loss function explored to train the SNN’s novelty de-

tectors. This function requires settling three inputs simultaneously: Positive Sam-

ple, Negative Sample, and Anchor. Both the positive sample and the anchor must

be from the same class of detector expertise, while the negative sample should be

represented by a data instance from another class. Then, the SNN will produce

mappings for each one of these inputs. As previously stated, the goal is maximi-
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zing the distance between the anchor and the negative instance while minimizing

the distance between the anchor and positive sample. The Triplet Loss function is

depicted in Eq. (2.18), where f denotes the output of the network, the subscripts a,

p, n denote the anchor, positive and negative inputs respectively; i denotes the ith

instance; N is the total number of training instances in the batch, and w denotes

a multiplicative weight applied to the negative distance that scales the negative-

anchor distance contribution, since it grows rapidly, making difficult for the model

learn how to reduce the positive-anchor distance.

L =
N∑
i

max(∥f(xa
i=1)− f(xp

i )∥22 − w∥f(xa
i )− f(xn

i )∥22, 0). (2.18)

A typical literature approach consists of creating triplets by combining every

positive and negative sample, a very time-consuming process. However, some work

[39] showed that not all examples equally contribute to learning. Here, a simple

strategy is adopted to define the positive and negative datasets using only the nearest

neighbor of the anchor vector in both cases, which is called the easy-positive-hard-

negative mining strategy [40].

As the detectors follow a class-oriented focus, it is possible to explore more infor-

mation about the non-class space, for instance, considering an approach that selects

one nearest neighbor for each one of the existing non-classes in the system. Thus,

two strategies are possible to compose the triplets: a) One Against All, where a

neighbor is selected among all data of the non-class together, which is the most

common approach in the literature, and b) One Against One, where a neighbor is

selected for each non-class in particular, which is a new approach proposed by this

work. These strategies are illustrated in Figures 2.11 and 2.12, where NN(x) in

Y indicates the nearest neighbor from the element x in the set Y , and Y − {x}

represents the set Y excluding the element x.

The novelty score in this case is defined by the distance between the SNN mapping

for the data under analysis and the one correspondent to its nearest neighbor from

the training set.
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Figure 2.11: An illustration of the One Against All strategy for the triplet

formation.

Figure 2.12: An illustration of the One Against One strategy for the

triplet formation.

For the sake of simplicity, the SNN models in this work are based on the Multilayer

Perceptron (MLP) architecture, whose hyperparameters are the number of layers,
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the quantity of neurons per layer, and the activation function. Like the Autoencoder,

the number of layers was chosen incrementally.

As SNN can learn mappings that better isolate classes from non-classes. There-

fore, this feature space can be also used in conjunction with other novelty detection

techniques, particularly the kNN.

2.4.10 ODIN

ODIN is a Neural Network technique destined to detecting out-of-distribution data

based on standard NN classifiers [41]. This out-of-distribution detector involves two

factors: temperature scaling and input preprocessing. To briefly describe ODIN,

assume a neural network trained to classify N classes, with softmax outputs. The

class label predicted by the network is ỹ(x) and it is given by Eq. (2.19), wherein

Si is computed by Eq. (2.20). The factor T represents the temperature scaling

parameter, settled to 1 during the training. The softmax score for the winner class

is given by Eq. (2.21). The purpose of the temperature scaling factor is turning the

output neurons more selective, allowing a more efficient out-of-distribution detection

[41].

ŷ(x) = argmaxi Si(x;T ). (2.19)

Si(x;T ) =
exp(fi(x)/T )∑N
j=1 exp(fj(x)/T )

. (2.20)

Sŷ(x;T ) = maxiSi(x;T ). (2.21)

The strategy behind ODIN is perturbing input data to maximally deviate softmax

outputs. Thus, small perturbations considering the gradient of network outputs

relatively the input data with a factor ϵ are produced by Eq. (2.22), where ϵ is the

perturbation magnitude parameter.

x̃ = x− ϵsign(−▽x logSŷ(x;T )). (2.22)
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The novelty score generator combines input preprocessing and the temperature

scaling. For each input x, its computed the preprocessed version of it, represented by

the vector x̃, which will define the input for the NN when computing the calibrated

softmax score, described by Eq. (2.21) [41]. The novelty score is defined by this

softmax score.

Note that the perturbation magnitude and the temperature scaling factor are

ODIN hyperparameters. An additional design factor refers to the MLP architecture

adopted. Since this technique is based on a monolithic N class classifier, it does not

allow the development of class-specialized novelty detectors.
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Chapter 3

Materials and Methods

One of the major work objectives is showing that class specialization may be

beneficial for novelty detection. Thus, this experimental study requires a dataset

for models’ learning and evaluation. Assessing models’ performance also requires

some figures of merit. Next sections will focus on discussing these issues.

3.1 Dataset

The dataset used in this work was provided by the Brazilian Navy Research Ins-

titute (IPqM). It is constituted by noise signals irradiated by 28 vessels of 8 classes

during 263 experimental runs in an acoustic lane situated in Arraial do Cabo, Rio

de Janeiro. The original vessels classes were hidden using alphabetical letters due

to security reasons [1]. In each run a vessel maintained its operational conditions,

having its noise acquired by one hydrophone situated on the seabed [2].

The noise signals were sampled at a frequency of 22050 Hz with a resolution

of 16 bit per sample, having underwent by the preprocessing chain depicted in

Figure 3.1 [8]. First, the signal was converted from the analog to the digital domain

and subsequently normalized. After, a Hanning window[42] was used to reduce

the artifacts introduced by the signal windowing. Then, the amplitudes of the

Discrete Fourier Transform of the signal with a size of 4096 were computed. The

resulting signal was then submitted to the Two-Pass Split Windows(TPSW)[43]

normalization to remove the background noise. Lastly, a subset composed by the

24



first 557 frequency spectral points were taken, covering the frequency range of 0 to

3kHz, which is associated to the vessel’s machinery noise signature. The resulting

signal can be exhibited by a plot named spectrogram, depicted in Figure 3.2, where

some vertical patterns (in a hot color) can be observed, which are related to the

vessel’s machinery harmonics.

Figure 3.1: Diagram of the digital signal processing chain (Adapted from [8]).

Figure 3.2: Spectrogram for an arbitrary database run (Extracted from [8]).

The procedure described above was applied to each vessel run, resulting in a total

of 29277 spectral windows with 557 dimensions each. Table 3.1 shows the number

of spectral windows available to each class. There is an evident class imbalance, but

the adopted performance assessment metrics as well as the use of specialized class

detectors mitigate possible negative effect of this on the detector’s performance.
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Table 3.1: Number of spectral windows for each class.

Class Spectral Windows

A 2432

B 3432

C 4797

D 3072

E 7075

F 2934

G 2143

H 3392

3.2 Resampling

The novelty detector design requires three datasets: training, validation, and test;

the first two for deriving the models, while the last for evaluating their performance.

This work considered the 10-fold resampling technique [44], where the dataset

was divided into 10 approximately equal folds and for each of these folds, one was

reserved for testing, while the others were joined and then splited in training (90%)

and validation (10%), resulting in a total of 10 trios of different training (81% of

total), validation (9% of total) and test (10% of total) sets.

3.3 Emulating the Unknown Classes

A rigorous evaluation of novelty detectors requires the knowledge of the unknown

classes, which is counter-intuitive and impossible. Thus, to allow a quantitative

evaluation of the detectors, the Dataset was divided into two groups: one composed

by the classes presumably known, while the other containing those assumed as unk-

nown. Additionally, our experiments explored three different scenarios regarding

the number of known classes, considering 3, 5, and 7 classes.

To define which classes would integrate each set, an experiment using the Nearest

Neighbour model (a particular use case of the kNN algorithm to which the value
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of k is set equal to 1) with the Non-specialized topology was conducted to identify

the worst combination of the known and unknown classes (to be selected from the

available dataset), assuming the AUC under the ROC curve as the figure of me-

rit (described in the following). The choice for the Nearest Neighbor model was

motivated by its simplicity, good performance, and absence of any additional hy-

perparameter to be tuned. The classes identified in this analysis for each evaluation

scenario are summarized in Table 3.2.

Table 3.2: Set of known and unknown classes identified to each evaluation scenario

(see text).

Scenario Known Unknown

Three-known classes {A, C, G} {B, D, E, F, H}
Five-known classes {A, B, C, F, G} {D, E, H}
Seven-known classes {A, B, C, H, F, G, H} {D}

3.4 Figures of merit

Basically, two figures of merit were considered here: the accuracy and the area

under the ROC curve (AUC). The first was used for tuning the hyperparameters

of the classifier adopted in the hierarchical novelty detector topology as well as for

assessing its performance. The second was used for tuning the hyperparameters of

the novelty detectors.

3.4.1 Accuracy

The accuracy is defined as the ratio between the overall number of correctly pre-

dicted instances by the total number of instances evaluated. It is related to the

diagonal of the confusion matrix, while off-diagonal entries are related to classifica-

tion errors.

3.4.2 AUC

Before getting into the process for generating the ROC curve considered in this

work, first, two metrics need to be described: the known-class detection rate and
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the unknown-class detection rate. Let us assume a set of known classes represented

by K = {K1, K2, ..., KN} and unknown classes by U = {U1, U2, ..., UR}.

The detection rate of the ith known class is given by

TCi =
1

#Ki

∑
x∈Ki

I(d(x) = 0), (3.1)

where x is the data instance under evaluation; d(x) is the novelty detector system

output for the given instance; #A represents the cardinality of some set A i.e., the

number of data instances integrating it; I is an indicative function that outputs 1

whenever the condition on its argument is true, otherwise returns 0. Thus, a global

performance indicator related to the known-class recognition is given by the average

detection rate described as [12]

TC =
1

N

N∑
i=1

TCi. (3.2)

The same goes for the detection of unknown classes. The detection rate of the ith

unknown class is given by

TDi =
1

#Ui

∑
x∈Ui

I(d(x) = 1). (3.3)

The global performance indicator related to the unknown class is the average unk-

nown detection rate defined as

TD =
1

R

R∑
i=1

TDi. (3.4)

Since the indicators TC and TD are dependent from the decision threshold settled,

the ROC curve can be used to express the values of TD and TC for a variety of

decision thresholds. Therefore, a good summary of the detector performance is the

area under the ROC curve, whose interpretation is simple: the closer the value of

AUC is to the unity, closer will be the ROC curve to the ideal square defined between

the origin and the point TD=TC=100, thus better will be the model.
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3.5 Tuning the novelty detector model hyperpa-

rameters

To set the hyperparameters of each novelty detector, the design options with the

highest average AUC values inferred over the validation set were considered. For

the Hierarchical and Unanimous topologies, each class-specialized novelty detector

had its hyperparameters tuned based on a one-against-all strategy, where only the

known-classes were considered. This means that for the three-known-classes evalua-

tion scenario, for instance, the AUC curve considered for tuning the novelty detector

of the class A assumes the two other known classes (C and G) as if they are unk-

nown. Thus, two AUC (A × G and A × C) are averaged to define the final AUC

considered for setting its hyperparameters. The same goes for the classes C and G.

The hyperparemeter tunning strategy for the LSTM autoencoder was incremental,

i.e., layers were incrementally added to the network until the model performance

stopped improving. The search for the best set of hyperparameters was made in

four stages, wherein the first stage considered the search for the number of LSTM

units and the activation function to be adopted in the first layer. The second stage

included the optimal noise standard deviation. The third stage aimed to define

the search for the optimal dropout rate. The fourth stage evaluated the addition

of a new layer, so involved again properly defining the related number of LSTM

units and the activation functions. Previous steps were repeated until the model’s

performance does not improve.

The same approach was followed with the Siamese Neural Networks but restricted

only to the three first stages. The first involved the search for the optimal combina-

tion of the number of neurons, activation function, and multiplicative weight that

regulates the negative part of the triplet loss. The second stage aimed to establish

an appropriate dropout rate. The third stage considered the addition of a new layer,

thus involved the same steps from the stage one. The previous steps were repeated

until the model’s performance stopped to improve.
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Appendix A summarizes the range of hyperparameters evaluated for each Machine

Learning technique and the best setups identified for each class and evaluation sce-

nario considered in this work.

3.6 Decision threshold setting process

As discussed previously in Chapter 3, the figure of merit used to assess the de-

tectors’ performance was the AUC, which is based on the ROC curve. In practical

terms, the ROC curves generated in this work considered 21 decision-threshold va-

lues settled to span TC and TD values in the range of 0 to 100%.

3.7 Statistical Analysis

Results underwent a statistical analysis using the Friedman test with a 5% level

of significance [44] to verify if the AUC indexes obtained for the different algorithms

were overall statistically different. The HSD test [44] was also applied to identify

between each pair of methods this difference could be be confirmed, i.e., the pairs

to which the p-value obtained with the HSD test were lower than 0.05.

3.8 Experimental Computational Environment

All experiments were performed using the Python programming language. The

novelty score generators and classifiers were created using the following libraries:

Tensorflow[45] for Autoencoder LSTM and Siamese Neural Networks; pytorch [46],

for ODIN using the code provided by the authors, and scikit-learn [47] for other

machine learning techniques. To manipulate the datasets, store and compare results,

the following libraries were used: Pandas [48], Numpy [49], Matplotlib [50], Scipy

[51] and scikit posthocs [52].

The computers’ hardware used to run the experiments varied. In general, for

machine learning techniques based on Neural Networks, computers with an I7 pro-

cessor of the fourth generation or with a second generation Ryzen 7, both equiped

with NVidia video cards (GTX 1080, GTX 1080 Ti, Titan X, RTX 2070, RTX 2080
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Ti ) and RAM memory ranged from 32 to 64GB DDR4 were used. For the other

machine learning techniques, servers with XEON 5120 with 128 GB of RAM.
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Chapter 4

Results

This chapter will summarize the experimental results related to the different no-

velty detection approaches considered in this work.

4.1 General chapter organization

The results were grouped according to the general approach assumed by the tech-

nique considered for the generation of the novelty score [9]: Distance based (kNN,

NNd, LOF and k -means), Mixture models (Gaussian Mixtures), Neural Networks

(Siamese Neural Networks, Autoencoder and ODIN), and Reconstruction and Do-

main (KPCA and One Class SVM). A specific section will be dedicated to each

one of these groups and one additional section will provide an overall comparison

between the best methods identified in each group.

The boxplot diagram, which is a graphical summary for the AUC values inferred

for all the ten testing folds of each technique and topology, will be used to compare

the models. This plot express the concepts of locality, spread, and skewness of

experimental outcomes graphically through their quartiles, with the upper part of

the box referring to the third quartile and the lower part to the first quartile as the

median signalized in orange. In the following boxplot diagrams, the label H after

some technique name will refer to the Hierarchical topology; U, the unanimous;

while N, Non-specialized.
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The statistical comparison of the results was made through hypothesis tests and

will be presented using a table in each section. Each of these tables contains four

columns, with the first three representing the medians of the ten test folds per

topology and the last column corresponding to the lowest p-value related to the

statistical comparisons between the highest median result and the medians from the

remaining detector topologies. Each table row responds for one particular novelty

detection score generator, while the last row depicts the lowest p-values obtained by

comparing the highest performance technique from a given general approach from

the competing methods. Furthermore, the last column of the last line compares the

technique-topology pair with the highest median with each other technique-topology

pair considering only the topology with the highest median for this technique to be

compared.

Figure 4.1 demonstrate how the p-value shown in the following chapter tables

were obtained. Two tables are considered: (a), containing the median of some score

generator for three topologies with the highest result marked in red; (b) shows the

p-value of the comparison between pairs of topologies. In blue, the row of interest,

as it corresponds to the topology with the highest median, wherein the row with

smallest p-value is in green, which represents the p-value of interest. The way to

find the p-value when comparing different score generators from a same topology

as well as scores from different generator-topology pairs is similar. When there are

only two topologies or two techniques being compared, the only p-value that exists

is shown and in this case the equal sign is applied instead of the greater sign.

Additionally, markers and symbols are used in the table to indicate the superiority

or statistical equivalence between techniques and topologies. The topology with the

highest median, when compared with alternatives from the same technique (i.e.,

between alternatives from the same row) marked in bold. The ”→” symbol shows

which topologies are statistically equivalent to the topology marked in bold for the

same technique (table row). The outcome of the technique with the highest median,

among those from the same topology (table column) is marked in blue. The ”↓”

symbol indicates the results that are statistically equivalent to those marked in blue

when considering a same topology (table column). Marked in red is the pair of
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Figure 4.1: Demonstration of how the smallest p-value is obtained when

comparing topologies of the same technique(see text).

technique and topology with the highest median. Note that the red mark overrides

the blue mark and the bold one for obvious reasons. The combinations statistically

equivalent to the ones marked in red are signalized by the ”*” symbol.

4.2 Distance-based techniques

In the Figures 4.2, 4.3 and 4.4 are depicted the boxplot graphs for the Distance-

based novelty detection methods, which include the kNN-median, kNN-mean (de-

noted as kNNb), LOF, NNd, and k-means.

For all evaluation scenarios (3, 5, and 7 known classes), Friedman tests pointed

out that methods performed differently (χ2(14) > 125.81 ; p < 0.001), thus the

p-values were lower than 0.01.

Table 4.1 shows the main results, which can be summarized as follows:

1. Three-known-class scenario: the Non-specialized topology obtained the highest

median values for most of the cases, except for kNN-median and kNN-mean.
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The kNN models achieved the highest medians with the Hierarchical topo-

logy, despite the related results being statistically equivalent to those derived

with the Unanimous topology. The k-means technique figures out as the one

with the highest medians for all topologies, and the Non-specialized topology

was the leading one; however, it is statistically equivalent to the Hierarchical

topology with the kNN median.

2. Five-known-classes scenario: the Non-specialized topology was the best solu-

tion for the LOF and NNd-based novelty detectors. For the remaining cases,

the Hierarchical was the best topology. Hierarchical and Unanimous topologies

obtained the highest medians with the k-means technique, however these re-

sults are statistically equivalent to those achieved by the LOF Non-specialized.

3. Seven-known-classes scenario: the Non-specialized topology is only the best

one when considering the LOF score, while for the remaining cases the Hi-

erarchical one. For all the other techniques, the Hierarchical topology re-

presented the best alternative. The technique with the highest performance

was the kNN-mean, which was statistically equivalent to the kNN-median and

k-means.

4. This analysis can be summarized as follows: the Hierarchical topology exploi-

ting the k-means novelty score represent the best topology for most of the

scenarios evaluated.

4.3 Mixture-models-based techniques

Figures 4.5 and 4.6 depicts the boxplot graphs for the Mixture-models-based no-

velty detection methods, which comprises Gaussian-mixture models with different

covariance types. In this figure, GM-spherical refers to the spherical covariance as-

sumption; GM-diag, the diagonal covariance; GM-full, the full covariance, and GM

represents a mix of covariances types (please refer to Appendix A for more details).

In summary, for all scenarios, the Friedman tests pointed out that the methods

performed differently (χ2(11) > 91.06 ; p < 0.001).
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(a) kNN, kNNb and k-means.

(b) LOF and NNd.

Figure 4.2: Boxplot diagram for the Three-known-class scenario considering the

distance-based novelty detection scores.
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(a) kNN, kNNb and k-means.

(b) LOF and NNd.

Figure 4.3: Boxplot diagram for the Five-known-classes scenario considering the

distance-based novelty detection scores.
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(a) kNN, kNNb and k-means.

(b) LOF and NNd.

Figure 4.4: Boxplot diagram for the Seven-known-classes scenario considering the

distance-based novelty detection scores.
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Table 4.1: Medians and p-values for the comparisons between multiple techniques

and topologies for the distance-based models case (see text).

Scenario Technique Hierarchical Unanimous Non-specialized p-value

3

kNN-median 0.9370 * 0.9346 → 0.9291 p>0.001009

kNN-mean 0.9358 0.9351 → 0.9262 p>0.001009

LOF 0.9189 → 0.9111 0.9319 p>0.037036

NNd 0.8772 0.8678 0.9018 p>0.001000

k-means 0.9431 → 0.9431 → 0.9444 p >0.9

p-value p >0.001000 p >0.001000 p >0.001000 p >0.001000

5

kNN-median 0.9091 ↓ * 0.9069 → ↓ 0.8922 p >0.001000

kNN-mean 0.8979 0.8961 → 0.8852 p >0.001000

LOF 0.8891 → 0.8765 0.9164* p >0.001000

NNd 0.8671 → 0.8416 0.8841 p >0.001000

k-means 0.9195 0.9158 → 0.9029 ↓ p >0.001000

p-value p >0.001000 p >0.001000 p >0.001000 p >0.001000

7

kNN-median 0.8647 ↓ * 0.8488 → ↓ 0.8342 ↓ p >0.001000

kNN-mean 0.8731 0.8585 → 0.8342 ↓ p >0.001000

LOF 0.8257 → 0.7679 0.8567 p >0.001000

NNd 0.8123 0.7103 0.8008 → p >0.001009

k-means 0.8707 ↓ * 0.8485 → ↓ 0.7934 p >0.001000

p-value p >0.001000 p >0.001000 p >0.001000 p >0.001000
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(a) Three-known-class scenario.

(b) Five-known-classes scenario.

Figure 4.5: Boxplot diagram for the three and Five-known-classes’ scenario consi-

dering the mixture-models-based detection scores.
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Figure 4.6: Boxplot diagram for the Seven-known-classes scenario considering the

mixture-models-based detection scores.

Table 4.2 depicts the main results, which can be summarized as follows:

• Three-known-class scenario: the best performing topology is the Hierarchical,

except for GM with the Non-specialized topology and diagonal covariance. The

diagonal covariance type detains the highest medians for all topologies and is

only statistical equivalent to the Hierarchical topology with GM. The global

highest median is achieved by the Hierarchical topology with the diagonal

covariance type, which has also shown to be statistical equivalent to the Non-

specialized topology with diagonal covariance.

• Five-known-classes scenario: For the diagonal and spherical covariance types,

the Hierarchical topology performed best. In the case of the full covariance

type, the best topology is Unanimous. For the mix of covariance types, the

best topology is again the Non-specialized. The best overall covariance type is

diagonal. The global highest median is achieved by the Hierarchical topology

with diagonal covariance, which has shown to be statistical equivalent to the

Non-specialized topology with the mix of covariance types.
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• Seven-known-classes scenario: the Hierarchical topology and the diagonal co-

variance figured out as the best design options, which has shown to be statis-

tical equivalent to the Hierarchical topology with GM.

• This analysis can be summarized as follows: the Hierarchical topology and the

diagonal covariance performs best for most evaluation scenarios.

Table 4.2: Medians and p-values for the comparisons between multiple techniques

and topologies for the mixture-models case (see text).

Scenario Technique Hierarchical Unanimous Non-specialized p-value

3

GM 0.9450 ↓ 0.9403 0.9594 ↓ * p>0.001009

GM-Diag 0.9602 0.9539 0.9594 → p>0.037036

GM-Spherical 0.9319 0.9277 → 0.9319 → p>0.631856

GM-Full 0.9362 0.9302 → 0.9280 p>0.037036

p-value p >0.001000 p >0.001000 p >0.001572 p >0.001000

5

GM 0.9432 ↓ 0.9367 ↓ 0.9540 ↓ * p>0.001009

GM-Diag 0.9602 0.9520 0.9540 p>0.001009

GM-Spherical 0.9214 0.9114 → 0.8699 p>0.001000

GM-Full 0.9054 → 0.9064 0.7856 p>0.002297

p-value p >0.001000 p >0.001000 p >0.017062 p >0.001000

7

GM 0.9476 ↓ * 0.8604 ↓ 0.9347 ↓ → p>0.001000

GM-Diag 0.9492 0.9252 0.9347 p>0.001000

GM-Spherical 0.8602 0.8377 → 0.7079 p>0.001000

GM-Full 0.8725 0.8608 → 0.5764 p>0.002297

p-value p >0.001000 p >0.001000 p >0.00100 p >0.001000

4.4 Neural-Networks-based techniques

Figures 4.7-4.12 depict the boxplot graphs for the Neural-Networks-based novelty

detection methods, which include the Siamese Neural Networks following two mo-

dels: SNN (e.g., with all the non-classes assumed as a unique non-class) and SNNb
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(e.g., with each non-class individually considered). SNNc refers to the best model

chosen between SNN and SNNb for each class (for more details please refer to the

Appendix A). In turn, SNN kNN, SNNb kNN, and SNNc kNN refers to models that

exploit the output vector of each of respective SNN as the input of a subsequent

kNN novelty detector, as described in Chapter 2. Finally, LSTM refers to the LSTM

Autoencoder.

The Friedman test reported that these methods performed diferently (χ2(15) >

115.1; p < 0.001). Table 4.3 depicts the main results, which can be summarized as

follows:

• Three-known-class scenario: the best topology for all methods was the Hierar-

chical. The LSTM Autoencoder was the best method for all topologies, being

statistically equivalent to methods exploiting kNN with SNN’s mappings.

• Five-known-classes scenario: the best topology in all cases was the Hierar-

chical. SNNb kNN was the best method for both the Hierarchical and Una-

nimous topologies, while the LSTM Autoencoder when considering the Non-

specialized topology. The highest global median was achieved by the SNNc kNN,

which has also shown to be statistically equivalent to SNNb kNN, SNNb,

SNNc, and the LSTM Autoencoder.

• Seven-known-classes scenario: once more the Hierarchical topology performed

best. SNNb was the best method for the Hierarchical and Unanimous to-

pologies, while the LSTM Autoencoder when considering the Non-specialized

topology, which has also shown to be statistically equivalent to ODIN. The

highest global median was obtained by the SNNb, which has similarly shown

to be statistically equivalent to SNNb kNN, SNNc kNN, and SNNc.

• In summary, the Hierarchical topology and the LSTM Autoencoder were the

best design choices for the Three-known-class scenario, while the Siamese Neu-

ral Networks approaches performed best for the five and Seven-known-classes

scenarios.
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(a) Three-known-class scenario for detectors based on SNN and kNN (see text).

(b) Three-known-class scenario for SNNs.

Figure 4.7: Results for the Neural-Network-based novelty detection techniques (part

I).
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(a) Three-known-class scenario for the LSTM Autoencoder.

(b) Three-known-class scenario for the ODIN.

Figure 4.8: Results for the Neural-Network-based novelty detection techniques (part

II).
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(a) Five-known-class scenario for detectors based on SNN and kNN (see text).

(b) Five-known-class scenario for SNNs.

Figure 4.9: Results for the Neural-Network-based novelty detection techniques (part

III).
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(a) Five-known-class scenario for the LSTM Autoencoder.

(b) Five-known-class scenario for the ODIN.

Figure 4.10: Results for the Neural-Network-based novelty detection techniques

(part IV).
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(a) Seven-known-class scenario for detectors based on SNN and kNN (see text).

(b) Seven-known-class scenario for SNNs.

Figure 4.11: Results for the Neural-Network-based novelty detection techniques

(part V).
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(a) Seven-known-class scenario for the LSTM Autoencoder.

(b) Seven-known-class scenario for the ODIN.

Figure 4.12: Results for the Neural-Network-based novelty detection techniques

(part VI).

49



Table 4.3: Medians and p-values for the comparisons between multiple techniques

and topologies for the Neural-Networks-based models case (see text).

Scenario Technique Hierarchical Unanimous Non-specialized p-value

3

SNN kNN 0.9524 ↓ * 0.9494 ↓ - p=0.001563

SNNb kNN 0.9540 ↓ * 0.9517 ↓ → - p=0.057779

SNNc kNN 0.9555 ↓ * 0.9525 ↓ - p=0.011413

SNN 0.9431 0.9359 - p=0.001563

SNNb 0.9410 0.9359 - p=0.001563

SNNc 0.9464 0.9395 - p=0.001563

ODIN - - 0.7167 -

LSTM 0.9589 0.9582 → 0.9486 p>0.001000

p-value p >0.001000 p >0.001000 p=0.001563 p >0.001000

5

SNN kNN 0.9370 0.9285 - p=0.001563

SNNb kNN 0.9488 ↓ * 0.9333 - p=0.001563

SNNc kNN 0.9518 0.9480 - p=0.001563

SNN 0.9438 0.9319 - p=0.001563

SNNb 0.9470 * ↓ 0.9333 - p=0.001563

SNNc 0.9470 * ↓ 0.9333 - p=0.001563

ODIN - - 0.7762 -

LSTM 0.9466 * 0.9410 → ↓ 0.9486 p>0.001000

p-value p >0.001000 p >0.001000 p=0.001563 p >0.001000

7

SNN kNN 0.9133 0.8930 ↓ - p=0.001563

SNNb kNN 0.9304 ↓ * 0.9154 ↓ - p=0.001563

SNNc kNN 0.9267 ↓ * 0.9204 → - p=0.057779

SNN 0.9194 0.8930 - p=0.001563

SNNb 0.9424 0.9204 - p=0.001563

SNNc 0.9424 ↓ * 0.9204 ↓ - p=0.001563

ODIN - - 0.8314 ↓ -

LSTM 0.9209 0.8890 → 0.8368 p>0.001000

p-value p >0.001000 p >0.005411 p=0.205903 p >0.001000

50



4.5 Reconstruction and Domain-based techniques

Figures 4.13 and 4.14 shows the results for the KPCA and One-Class SVM

(OCSVM) techniques. The Friedman test reported (χ2(5) > 47.6; p < 0.001) that

for all evaluation scenarios the methods performed differently. Table 4.4 summarizes

the main results. Clearly, the best design options in this case are the Hierarchical

topology with KPCA.

Table 4.4: Medians and p-values for the comparisons between multiple techniques

and topologies for the reconstruction and domain based models case (see text).

Scenario Technique Hierarchical Unanimous Non-specialized p-value

3

OCSVM 0.7270 0.6809 → 0.6448 p>0.001000

KPCA 0.8662 0.8485 → 0.8154 p>0.001000

p-value p=0.001563 p=0.0015634 p=0.001563 p=0.001563

5

OCSVM 0.6592 0.5133 0.5182 p>0.001000

KPCA 0.8059 0.7785 → 0.6740 p>0.001000

p-value p=0.001563 p=0.001563 p=0.001563 p=0.001563

7

OCSVM 0.4 0.12 0.2027 → p>0.001000

KPCA 0.7620 0.6514 0.6243 p>0.001000

p-value p=0.001563 p=0.001563 p=0.001563 p=0.001563

4.6 Comparison of the best performing methods

Figures 4.15 and 4.16 exhibit a comparison between the best performing methods

identified for each previous group. It is important to note that all topologies in this

analysis are Hierarchical. The final results can be summarized as follows:

• Three-known-class: the highest median is achieved by the Gaussian Mixture

model with the diagonal covariance type, which has shown to be statistically

equivalent to the LSTM (p=0.9).

• Five-known-classes: the highest median corresponds to the Gaussian Mixture
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(a) Three-known-class scenarios for the OCSVM and KPCA.

(b) Five-known-classes scenarios for the OCSVM and KPCA.

Figure 4.13: Boxplot diagram for the three and Five-known-classes scenario consi-

dering the reconstruction and domain novelty detection scores.
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Figure 4.14: Boxplot diagram for the Seven-known-classes scenario considering the

reconstruction and domain novelty detection scores.

model with the diagonal covariance type, which has shown to be statistically

equivalent to the SNNc kNN (p=0.507386).

• Seven-known-classes: the highest median was obtained with the Gaussian Mix-

ture model with the diagonal covariance type, which has shown to be statisti-

cally equivalent to the SNNb (p=0.507386).
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(a) Three-known-class scenario

(b) Five-known-classes scenario

Figure 4.15: Boxplot diagram comparing the best performing methods identified for

each group (part I).
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Figure 4.16: Boxplot diagram comparing the best performing methods identified for

each group (part II).
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Chapter 5

Conclusion

This work addressed the problem of detecting new classes of contact (vessels) in

passive sonar signals exploiting class-specialized Machine Learning (ML) detectors.

Two modalities of class specialization were considered in this case: Hierarchical and

Unanimous. In the former, a high-performance classifier has the role of identifying

which known class the event under observation is more similar to, triggering a speci-

alized detector responsible for defining if it represents a novelty or not. In the latter,

the same event is submitted to many detectors (one to each class) simultaneously,

and a novelty is identified only when all detectors agree. For the sake of simplicity,

the Hierarchical models considered a kNN classifier.

In both cases, a comprehensive study of ML techniques for defining the no-

velty score generators were conducted, including Distance-based (kNN, LOF, NNd

and k-Means), Domain-based (One Class SVM), Reconstruction-based (KPCA),

Probabilistic-based (GMM), and Neural Network approaches (ODIN, Autoencoder

and Siamese Neural Network). The AUC was the figure of merit for all detectors

evaluation.

This study exploited a dataset provided by the IPqM, composed by signals irradi-

ated by eight classes of vessels, which were acquired by a hydrophone situated in the

seabed, during experimental runs conducted in an acoustic lane from the Brazilian

Navy. These signals were windowed (without overlap) and submitted to a processing

chain that outputs a vector with 557 dimensions, containing the spectral content of

the noise irradiated by the vessels’ engines in the range from 0 to 3kHz.
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Based on the experiments, it is possible to claim that the best design option for

the novelty detector in general is the Hierarchical approach (the exception is the

three-known-classes case), considering the following techniques for the novelty score

generation:

1. Three-known-classes scenario: k-means, Gaussian Mixture with diagonal co-

variance, LSTM and KPCA. Except for the k-means, which pointed in favor

of the Non-specialized topology, the Hierarchical topology is the best.

2. Five-known-classes scenario: k-means, Gaussian Mixture with diagonal cova-

riance, SNNc with kNN, and KPCA.

3. Seven-known-classes scenario: kNN-mean, Gaussian Mixture with diagonal

covariance, SNNb and KPCA.

In overall terms, the Gaussian Mixture model with diagonal covariance was the

best design option when considering all evaluation scenarios.

In future works, the selection strategies of hard and semi-hard online triplets

[39] will be explored for training the Siamese Neural Network with the triplet loss

function. These strategies tries to impose a more strict and harder separation task

between positive and negative samples, which may lead to better model genera-

lization and consequently detector performance. And also is intended to explore

Generative Neural Networks models for novelty detector, such as GAN [53] and

Variational Autoencoder [54] models.
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[27] SCHÖLKOPF, B., WILLIAMSON, R. C., SMOLA, A., et al., “Support Vector

Method For Novelty Detection”. In: Solla, S., Leen, T., Müller, K. (eds.),

Advances in Neural Information Processing Systems, v. 12, 1999.
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Appendix A

Hyperparameters’ selection

This appendix describes in more detail the process of hyperparameters’ selec-

tion. The first section addresses the choice of the hyperparameters required by

the kNN classifiers explored in the Hierarchical topology. In the sequence, the fol-

lowing content will be split into two big groups: the Non-neural models and the

Neural-Networks-based models, since the tuning of the latter followed an incremen-

tal approach.

A.1 kNN classifier

The kNN classifier explored by the Hierarchical model was tunned using the ac-

curacy as the figure of merit inferred over the validation set. The hyperparameters

chosen for each evaluation scenario and the median of the accuracy in the 10 folds

are described in Table A.1.

Table A.1: Hyperparameters investigated and chosen for the kNN classifier.

Class Number of neighbors chosen Hyperparameter range Accuracy

ACG 9 1-30 0.98531

ABCFG 11 1-30 0.98538

ABCEFGH 11 1-30 0.97887
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A.2 Non-neural models

Tables A.2, A.3 and A.4 show the range of hypeparameters investigated and chosen

for the three evaluation scenarios considering the Non-neural models. In the case of

GM entries, the letters indicates the covariance type, i.e., full (F) or diagonal (D).

For the SNN kNNc technique, the model chosen was the best performing between

SNN kNNa and SNN kNNb. The following tables include a column called NSD that

represents the hyperparameters of the detector in the case of the Non-specialized

topology.

Table A.2: Hyperparameters investigated and chosen for the three-known-class sce-

nario.

Technique A C G NSD Hyperparameter range

kNN-Mean 6 2 15 6 1-30

kNN-Median 7 2 15 8 1-30

LOF 12 4 21 3 2-30

NNd 1 1 2 1 1-5

k-Means 325 425 275 625 25-750

KPCA 45 60 30 40 5-95

GM full 125 195 75 245 5-255

GM diag 35 155 255 205 5-255

GM spherical 145 255 15 255 5-255

GM 125-F 195-F 255-D 205-D -

SNNa kNN 1 2 1 - 1-30

SNNb kNN 1 2 3 - 1-30

SNNc kNN a b a - -

A.3 Neural-Networks-based models

A.3.1 LSTM Autoencoder

The hyperparameters chosen for the LSTM Autoencoder models are summarized

in Table A.5, where each column represents a network layer, and for each entry there
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Table A.3: Hyperparameters investigated and chosen for the five-known-classes sce-

nario.
Technique A B C F G NSD Hyperparameter range

kNN-Mean 5 2 2 2 15 4 1-30

kNN-Median 5 2 2 2 15 5 1-30

LOF 14 11 4 9 19 3 2-30

NNd 1 1 1 1 1 1 1-5

k-Means 325 750 425 725 275 725 25-750

KPCA 45 80 60 50 30 75 5-95

GM full 105 155 255 255 115 245 5-255

GM diag 35 85 145 85 125 255 5-255

GM spherical 155 255 255 155 95 255 5-255

GM 35-D 85-D 255-F 85-D 125-D 255-D -

SNN kNNa 2 3 1 3 4 - 1-30

SNN kNNb 4 1 2 5 12 - 1-30

SNN kNNc b a b b a - -

Table A.4: Hyperparameters investigated and chosen for the seven-known-classes

scenario.
Technique A B C E F G H NSD Hyperparameter range

kNN-Mean 5 2 2 2 2 15 14 2 1-30

kNN-Median 9 2 2 4 3 15 17 2 1-30

LOF 10 11 4 4 8 20 28 3 2-30

NNd 1 1 1 1 1 1 1 1 1-5

k-Means 200 750 425 750 725 175 225 750 25-750

kPCA 45 80 60 85 50 35 30 90 5-95

GM full 105 215 255 255 135 75 245 15 5-255

GM diag 35 85 145 135 85 125 85 255 5-255

GM spherical 155 225 255 255 125 115 85 255 5-255

GM 35-D 85-D 255-S 135-D 85-D 125-D 85-S 255-D -

SNN kNNa 6 1 3 5 4 5 14 - 1-30

SNN kNNb 2 4 2 23 2 1 2 - 1-30

SNN kNNc b b b b a b b - -

is a tuple indicating the number of LSTM units in the layer, the layer’s activation

functions (S for SeLU; R for ReLU, and L for LeakyReLU), the noise standard

deviation value (restricted to the first layer), and the dropout rate (also restricted

to the first layer), respectively. There is also a column entitled NSD that refers to

the Non-specialized topology.

A.3.2 Siamese Neural Networks

In this case, the tuples will be composed by the number of neurons, the activa-

tion function, the dropout rate (restricted to the first layer), and the weight factor

(restricted to the last layer). Table A.6 and A.7 summarizes the results for SNNa

and SNNb. Table A.8 indicates which SNN model (SNNa or SNNb) was chosen for

composing the SNNc model.
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Table A.5: Hyperparameters chosen for the LSTM Autoencoder.

Scenario Class 1st Layer 2nd Layer 3rd Layer 4th Layer

3 A {512, S, 0.07, 0.3} {512, R}
3 C {512, S, 0.07, 0.3} {512, R} {256, S}

3 G {512, R, 0.02, 0.3} {256, R}

3 NSD {512, S, 0.07, 0.3} {512, R}

5 A {512, S, 0.07, 0.3} {512, R}

5 B {512, S, 0.07, 0}

5 C {512, S, 0.07, 0.3} {512, R} {256, S}

5 F {512, S, 0.08, 0.0} {256, S}

5 G {512, R, 0.02, 0.3} {256, R}

5 NSD {512, S, 0.07, 0.0} {512, S} {512, S}

7 A {512, S, 0.0, 0.4} {512, S}

7 B {512, S, 0.07, 0}

7 C {512, S, 0.07, 0.05} {256, S} {256, R} {256, S}

7 E {256, S, 0.06, 0.0} {256, L}

7 F {512, S, 0.05, 0.05} {128, S}

7 G {512, R, 0.02, 0.1} {512, L}

7 H {512, L, 0.09, 0.25} {512, S}

7 NSD {512, S, 0.07, 0.0} {512, S} {512, S}

A.4 ODIN

ODIN hyperparameters are the temperature and the disturbance magnitude. The

first one considered values from the list [1, 10, 100, 1000], and for the second, we

have the values [0, 0.1, 0.1, 0.01, 0.001]. The Neural Network model was a MLP with

512 neurons at the first layer and the subsequent layers have the number of neurons

from the immediately previous layer halved until this value reached 8 neurons. The

activation function in each layer was the ReLU. The hyperparameters chosen are

presented in Table A.9.
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Table A.6: Hyperparameters chosen for the SNNa architecture.

Scenario Class 1st Layer 2nd Layer 3rd Layer

3 A {512, L, 0.1, 0.1}
3 C {512, S, 0.15, 1}

3 G {512, L, 0.0, 0.01}

5 A {512, L, 0.0} {512, L, 0.01}

5 B {512, S, 0.45,} {512, L} {256, L, 1}

5 C {512, L, 0.0, 0.1}

5 F {512, S, 0.45, 1}

5 G {256, L, 0.0, 0.01}

7 A {512, L, 0.0, 0.1}

7 B {512, S, 0.4,} {256, S, 1}

7 C {512, L, 0.0, 0.1}

7 E {512, S, 0.0, 0.1}

7 F {512, S, 0.15, 1}

7 G {256, L, 0.0, 0.01}

7 H {256, L, 0.05} {256, L} {256, L, 0.1}
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Table A.7: Hyperparameters chosen for the SNNb architecture.

scenario Class 1st Layer 2nd Layer 3rd Layer

3 A {256, S, 0.0, 0.1}
3 C {512, L, 0.05} {256, S, 1}

3 G {512, L, 0.0, 0.01}

5 A {512, S, 0.0, 0.1}

5 B {512, S, 0.0, 0,1}

5 C {128, L, 0.0, 0.01}

5 F {512, S, 0.05, 0.1}

5 G {128, L, 0.0, 0.01}

7 A {256, S, 0.0, 0.1}

7 B {512, S, 0.4,} {512, L} {512, L, 0.1}

7 C {512, L, 0.0, 0.1}

7 E {512, S, 0.0, 0.1}

7 F {512, L, 0.05, 0.1}

7 G {256, L, 0.05, 0.1}

7 H {256, L, 0.00, 0.1.}

Table A.8: SNN model (SNNa or SNNb) chosen for each evaluation scenario in the

case of the SNNc approach.

scenario A B C E F G H

3 SNNa - SNNb - - SNNa -

5 SNNb SNNa SNNb - SNNb SNNa -

7 SNNb SNNb SNNb SNNb SNNa SNNb SNNb

Table A.9: ODIN hyperparameters for each evaluation scenario.

Class Temperature Disturbance Magnitude

ACG 1 0

ABCFG 10 0

ABCEFGH 1 0
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Appendix B

Publications

Most of this work was developed during my Scientific Initiation Stage at UFRJ,

and has resulted in four conference papers and one journal article, whose abstracts

are reproduced below for the reader’s convenience.

• Title: Aprendizado por Instância para a Identificação de Classes Desconheci-

das em Sonares Passivos.

Authors: Victor Hugo da Silva Muniz, João Baptista de Oliveira e Souza Fi-

lho, Eduardo Sperle Honorato.

Conference: XIV Congresso Brasileiro de Inteligência Computacional(2019).

Abstract: In submarines, the task of sonar operators is to identify possible

threats (contacts), mainly using the passive sonar system. Automatic contact

classification systems require the identification of vessels of unknown classes

during their operation. This work discusses the construction of a hierarchi-

cal system for the recognition of such occurrences, considering an experimental

study involving learning techniques by instance, in scenarios of increasing com-

plexity, for this purpose. The experiments, exploring data collected in acoustic

lanes from 28 ships belonging to 8 classes in different operational conditions,

showed a better performance of the k-Nearest Neighbors technique, reaching a

novelty detection rate of 78.0%, combined with an average rate identification

of known cases of 95.0%, for a scenario with 3 known classes.

• Title: Deteção Hierárquica de Classes Desconhecidas em Sonar por ”Autoen-

coders” Convolucionais.
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Authors: Eduardo Sperle Honorato, Victor Hugo da Silva Muniz, João Bap-

tista de Oliveira e Souza Filho.

Conference: XXXVIII Simpósio Brasileiro de Telecomunicações e Processa-

mento de Sinais(2020).

Abstract: Acoustic waves captured by passive sonar systems are analyzed by

human operators, aiming to identify possible threats in the subsea environ-

ment. Automatic Classification Systems can aid in the work of this profes-

sional, however requiring mechanisms to deal with the presence of unknown

classes. This article proposes the use of a hierarchical committee of convo-

lutional autoencoders to build these systems, as a more robust alternative to

the k-nearest neighbors algorithm, which represents the state-of-the-art in this

problem. Real data belonging to 8 classes of ships under different operational

conditions were evaluated. Results signalize a competitive performance of the

proposed technique.

• Title: A Hierarchical Ensemble of LSTM-based Autoencoders for Novelty De-

tection in Passive Sonar Systems.

Authors: Eduardo Sperle Honorato, Victor Hugo da Silva Muniz, João Bap-

tista de Oliveira e Souza Filho.

Conference: seventh Latin American Conference on Computational Intelli-

gence(2021).

Abstract: Sonar operators represent a vital workforce for identifying poten-

tial threats to submarines (referred to as contacts) by analyzing underwater

acoustic signatures acquired by their passive sonar system. Automatic con-

tact classification models may alleviate the sonar operator task but require

additional tools for identifying any class of contact not considered in system

development. This paper addresses the use of a hierarchical detector of unk-

nown classes of contact for passive sonar systems, considering the modeling

of signal spectra by Long Short-Term Memory Autoencoders networks. The

proposed system was evaluated with signals from 28 ships belonging to 8 clas-

ses, acquired in a Brazilian Navy acoustic range. Such a system achieves an

expressive median value for the area under the detection operation curve of
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0.946, for a simulation scenario involving 5 known classes, surpassing the state-

of-the-art technique.

• Title: Clustering-and-Bagging-based Ensemble for Novelty Detection in Pas-

sive Sonar Systems

Authors: Eduardo Sperle Honorato, Victor Hugo da Silva Muniz, João Bap-

tista de Oliveira e Souza Filho.

Conference: Eighth Latin American Conference on Computational Intelligence

(2022).

Abstract: Trained submarine operators identify threats through passive sonar

systems by analysing the acoustic waves captured by arrays of hydrophones.

Automatic Classification Systems may be quite beneficial to address this task;

however, typical operational settings require instruments to identify the oc-

currences of unknown classes of ships for promptly alerting this specialised

crew. This article proposes a new approach for developing an accurate novelty

detector of unknown classes of ships. This proposal comprises an architec-

ture composed by a synergistic combination of cluster-specialised and bagging

generated novelty detectors, in opposition to a previous solution exploiting a

hierarchical class-specialised architecture. The proposed approach is experi-

mentally evaluated using radiated noise from 8 classes of ships, acquired in an

acoustic range from the Brazilian Navy. The proposed detector outperforms

previous works in 4.4% of AUC (on average), assuming an evaluation scenario

composed by five known and three supposedly unknown ship classes. This

gain is relevant to this performance-critical application and is related to a

more strict definition of class boundaries attained by the proposed strategical

clustering and bagging combination.

• Title: Instance-based novelty detection in passive sonar signals

Authors: Victor Hugo Da Silva Muniz, João Baptista De Oliveira e Souza

Filho, Eduardo Sperle Honorato

Journal: International Journal of Innovative Computing and Applications

Abstract: In submarines, sonar operators have the main task of identifying
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potential threats, named as contacts in the military jargon. The principal

tool exploited when dealing with such situations is the passive sonar system.

Automatic contact classification models may relieve the huge sonar operator

workload but require mechanisms capable of identifying any contact not con-

sidered during system development. This paper discusses the development of

a hierarchical instance-based detector of unknown contact classes for passive

sonar signals, focusing on practical strategies for its hyperparameter tuning

and performance assessment. Experimental data exploited in system evalua-

tion comprises the acoustic noise irradiated by 28 ships belonging to 8 classes.

These ships were submitted to different operational conditions in several runs

conducted in an acoustic range. The kNN algorithm has performed best, achi-

eving a novelty detection rate of 78.0%, associated with an average known

case identification rate of 95.0%, considering a five unknown class evaluation

scenario.
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