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RESUMO

HONORATO, E. S. Fusao multi-sensorial com mecanismos de atencio para percepc¢ao vi-
sual em veiculos autonomos. 2025. 105 p. Dissertagao (Mestrado em Ciéncias — Ciéncias
de Computagdo e Matemdtica Computacional) — Instituto de Ciéncias Matematicas e de Computa-
¢do, Universidade de Sao Paulo, Sdo Carlos — SP, 2025.

Veiculos auténomos estio cada vez mais préximos de se tornarem parte do cotidiano urbano. No
entanto, desafios significativos ainda precisam ser superados para garantir que esses veiculos
sejam seguros e eficientes. Um dos principais desafios estd na percepc¢ado, especialmente na
segmentacgdo e detecc¢do de objetos 3D, que utiliza multiplos sensores para melhorar a precisao
e operar em condicdes adversas. A fusdo eficiente desses sensores € uma questdo central, pois
determina a qualidade da deteccao e o custo computacional do sistema. Métodos modernos
de fusao multissensorial fazem uso de técnicas de Aprendizado Profundo, e uma abordagem
emergente nessa drea € a utilizacdo de mecanismos de atencdo. Esses mecanismos permitem
obter representacoes mais informativas dos mapas de caracteristicas extraidos pelos sensores,
destacando as informag¢des mais relevantes e suprimindo aquelas menos significativas. Neste
contexto, este trabalho investiga o uso de mecanismos de ateng¢do para otimizar o modelo
BEVFusion, que alcangou o estado da arte ao empregar uma fusdo unificada Camera-LiDAR
na representacdo Bird’s Eye View (BEV). O principal diferencial do BEVFusion € sua eficiente
transformacgdo da visdo de perspectiva das cAmeras para a representacdo BEV. No entanto, sua
abordagem de fusdo se limita a simples concatenacdo das caracteristicas extraidas dos sensores,
0 que pode ndo ser a solucdo mais eficiente. Outro aspecto critico do modelo BEVFusion € seu
alto custo computacional, pois depende de redes neurais profundas que exigem hardware robusto,
tornando sua aplicacdo em veiculos autdbnomos mais desafiadora. Isso se deve ao fato de que o
hardware embarcado desses veiculos precisa ter baixo custo e alta efici€éncia energética. Diante
desse cendrio, este trabalho propde o estudo e a implementacdo de mecanismos de ateng¢ao
para aprimorar a fusdo de sensores do BEVFusion nas tarefas de detec¢ao de objetos 3D e
segmentagdo, a0 mesmo tempo em que busca tornar o modelo mais eficiente computacionalmente.
Foram realizadas modificacdes para reduzir o consumo de VRAM e o tempo de processamento,
garantindo um desempenho semelhante ao do modelo original, mas com menor demanda por
recursos computacionais. Os resultados obtidos s@o promissores, demonstrando um aumento de
14.12% no 1oU para a tarefa de segmentacdo e de 0.732% no mAP para a deteccdo de objetos
3D. Além disso, houve uma reducdo de 3,3 vezes no tempo de treinamento € uma diminuicao de

quase 50% no consumo de memoéria VRAM.

Palavras-chave: Mecanismo de Atencao, Fusdo Multi-Sensorial, Segmentacdo, Detec¢ao de

Objetos 3D, Veiculos Autdonomos.






ABSTRACT

HONORATO, E. S. Multi-sensor fusion with attention mechanisms for visual perception in
autonomous vehicles. 2025. 105 p. Dissertacdo (Mestrado em Ciéncias — Ciéncias de Computa-
cdo e Matematica Computacional) — Instituto de Ciéncias Matemdticas e de Computag@o, Univer-
sidade de Sao Paulo, Sao Carlos — SP, 2025.

Autonomous vehicles are increasingly becoming a part of urban life. However, significant
challenges still need to be overcome to ensure these vehicles are both safe and efficient. One
of the main challenges lies in perception, particularly in 3D object segmentation and detection,
which relies on multiple sensors to enhance accuracy and operate under adverse conditions. The
efficient fusion of these sensors is a crucial factor, as it directly impacts detection quality and
computational cost. Modern multi-sensor fusion methods leverage Deep Learning techniques,
and an emerging approach in this field is the use of attention mechanisms. These mechanisms
enable more informative representations of feature maps extracted from sensors, highlighting
the most relevant information while suppressing less significant data. In this context, this study
explores the use of attention mechanisms to optimise the BEVFusion model, which has achieved
state-of-the-art performance by employing a unified Camera-LiDAR fusion in a Bird’s Eye View
(BEV) representation. The key advantage of BEVFusion is its highly efficient transformation
of camera-perspective views into the BEV representation. However, its sensor fusion approach
is limited to a simple concatenation of extracted features, which may not be the most efficient
solution. Another critical aspect of BEVFusion is its high computational cost, as it relies on
deep learning models that demand powerful hardware, posing a challenge for deployment in
autonomous vehicles. This is particularly relevant given the need for embedded hardware in
such vehicles to be both cost-effective and energy-efficient. To address these issues, this study
investigates and implements attention mechanisms to enhance the sensor fusion process in
BEVFusion for 3D object detection and segmentation, while also improving computational
efficiency. Modifications were made to reduce VRAM consumption and processing time,
ensuring performance comparable to the original model but with lower computational demands.
The results are promising, showing a 14.12% increase in IoU for the segmentation task and a
0.732% improvement in mAP for 3D object detection. Additionally, training time was reduced

by a factor of 3.3, and VRAM consumption was nearly halved.

Keywords: Attention Mechanism, Multi-sensor Fusion, Segmentation, 3D Object Detection,

Autonomous Vehicles.
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CHAPTER

INTRODUCTION

Advancements in autonomous vehicles have demonstrated significant potential to trans-
form urban mobility, bringing us closer to a future where these vehicles will become a common
presence in our cities. Over the years, there has been a growing and sustained interest in au-
tonomous vehicle research. In recent years, this field has experienced remarkable progress,
driven by continuous improvements in artificial intelligence algorithms, advancements in sensor
technology, and increased computational capacity for processing and decision-making. These
developments are paving the way for the practical feasibility and seamless integration of au-
tonomous vehicles into daily life, fostering a revolution in how we move and interact within

urban environments.

One of the most critical tasks for autonomous vehicles is perception, as it serves as the
foundation for others such as motion and trajectory planning, obstacle avoidance, and more.
Perception in autonomous vehicles involves the ability to interpret and understand the surrounding
environment through sensors and data processing algorithms. This task is essential for ensuring
safe and efficient driving, as it provides crucial information for motion and trajectory planning.
By perceiving the environment, the vehicle can identify and recognize objects such as other
vehicles, pedestrians, cyclists, traffic signs, and obstacles, enabling real-time decision-making to

avoid collisions and comply with traffic rules.

Moreover, perception is also essential for autonomous navigation in complex and dy-
namic environments, such as urban areas and highways, where a variety of scenarios and
conditions require the vehicle to respond adaptively and swiftly. Therefore, developing robust
and accurate perception systems is a critical aspect of advancing autonomous vehicle technology
and ensuring the safety and reliability of these systems. Within the field of perception for au-
tonomous vehicles, several fundamental areas stand out, playing crucial roles in the vehicle’s
ability to understand and interact with its environment: 3D object detection, road and lane

detection, and segmentation.
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3D object detection is a key area within autonomous driving, responsible for identifying
and localizing three-dimensional objects in the vehicle’s surroundings, such as cars, pedestri-
ans, cyclists, and obstacles. This task is fundamental to ensuring the safety and efficiency of
autonomous vehicles by enabling them to recognize and appropriately respond to environmental
elements that may pose risks or obstruct their path. Figure 1 illustrates an example of 3D object

detection in an urban scenario, where the green bounding boxes represent the detected objects.

Figure 1 — Example of 3D object detection in an urban scenario, highlighting how objects are marked.
Adapted from (SINDAGI; ZHOU; TUZEL, 2019).

Segmentation is another critical area, aimed at dividing a scene into distinct regions or
objects based on their visual or semantic attributes. This process enables a more detailed and
nuanced understanding of the environment, supporting the precise identification and classification
of individual elements. Additionally, it facilitates the delineation of areas of interest, such as
roads, sidewalks, and pedestrian crossings, which are essential for autonomous navigation.
Figure 2 illustrates an example of semantic segmentation in an urban environment, where objects

belonging to the same category are represented by the same color.

Figure 2 — Example of semantic segmentation, adapted from (GAUTAM; MATHURIA; MEENA, 2022a).
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Finally, road and lane detection is pivotal for autonomous navigation, as it involves
identifying and mapping the paths available to the vehicle while determining their geometry,
direction, and traffic conditions. This capability enables the vehicle to plan and execute safe
and efficient trajectories, remain within the appropriate lanes, and adhere to traffic regulations.
Together, these tasks form the cornerstone of perception in autonomous vehicles, delivering the
critical information required for reliable and intelligent autonomous driving. Figure 3 illustrates

an example of lane detection, showing the ground truth used to train a lane detection model.

Figure 3 — Example of lane detection, adapted from (HONDA; UCHIDA, 2023).

For all these tasks, the use of cameras is fundamental and highly intuitive, as vision is
the primary sense humans rely on, and many elements in urban environments are designed to be
visually distinguishable. However, there are limitations to relying exclusively on images, such
as difficulties in accurately estimating distances or obtaining a comprehensive representation
of the vehicle’s surroundings solely through visual information. To overcome these limitations,
other sensors, such as Light Detection And Ranging (LiDAR) and Radio Detection And Ranging
(RADAR), can be employed alongside camera images. This combination enables the capture of
additional nuances, such as distance, speed, and three-dimensional representations of objects
around the vehicle. This multimodal approach provides a more complete and accurate view of the
environment, thereby enhancing the perception and decision-making capabilities of autonomous

vehicles.

The use of multiple sensors raises fundamental questions about how the data obtained
from these devices can be effectively integrated to perform perception tasks. This is a broad and
constantly evolving field of study, not only in the context of autonomous vehicles but also in
many other areas. There are several approaches to sensor fusion; however, in recent years, the
use of Machine Learning techniques, especially Deep Learning, has emerged as a promising way

to achieve this integration intelligently and efficiently.

The field of Deep Learning is constantly evolving, with applications across a wide
variety of domains. Often, a method is proposed to solve a specific problem, but due to the
modular nature of algorithms, they can be adapted and modified to be applied in other areas.

This flexibility and versatility of Deep Learning models have driven significant advancements
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in various disciplines, constantly expanding the boundaries of what can be achieved with this

technology.

In the current context, the attention mechanism, initially developed to address issues
related to sequences and linguistic problems, has been successfully adapted to handle classifi-
cation and detection problems in images. One of the most prominent attention methods is the
Transformer(VASWANI et al., 2017), widely known for its applications in natural language

processing and pattern recognition in images.

The attention mechanism is based on the ability to process a signal and highlight the
most relevant components for a given task, while disregarding the less relevant ones. In this
sense, exploring these features can be crucial for identifying which sensors are most relevant
in a specific situation, or even which specific parts of each sensor are crucial for the accurate
detection of three-dimensional objects under certain circumstances. Thus, this thesis emerges as
a study on how attention mechanisms can be employed to extract more meaningful information

from sensors, aiming to enhance the fusion process between them.

This study is based on the BEVFusion model (LIU et al., 2022), which stands out for
setting a new standard by converting multiple camera images and LiDAR point clouds into
a unified representation known as Bird’s Eye View (BEV). This representation provides an
aerial view of the environment around the vehicle, facilitating the detection and segmentation
of 3D objects, while optimizing processing time. However, the sensor fusion approach used by
BEVFusion is relatively simple, consisting of concatenating the feature maps from the sensors
and processing them through a convolutional network. Therefore, this thesis aims to explore more
advanced fusion methods, utilizing attention mechanisms, to further improve the performance of

the original model.

One of the major drawbacks of BEVFusion is its high computational cost, as it relies
on deep neural networks to process multi-sensor data, demanding powerful hardware with high
energy consumption. This poses a challenge for real-world deployment in autonomous vehicles,
where onboard computational resources must be efficient, cost-effective, and energy-conscious.
The reliance on hardware with excessive power consumption not only limits the scalability
of such models but also contradicts the fundamental need for optimised embedded systems
in autonomous driving. Therefore, improving computational efficiency is crucial to reducing
inference time and energy consumption while maintaining high detection and segmentation
performance. This study addresses these limitations by integrating attention mechanisms that

enhance sensor fusion while simultaneously reducing the computational burden of the model.

The contributions of this work are twofold. First, it involves a comprehensive study of
various attention mechanisms to perform multi-sensor fusion, aiming to enhance performance in
3D object detection and segmentation tasks. Second, it seeks to reduce the computational cost of
the baseline state-of-the-art model without significant losses in these two tasks. Both objectives

were successfully achieved, demonstrating the viability and impact of the proposed methods in
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advancing the field of multi-sensor fusion and neural network optimization.

Experimental results demonstrated a significant performance improvement, showcasing
the effectiveness and success of the proposed approach. The attention mechanisms explored in
this work proved to be instrumental in enhancing multi-sensor fusion, highlighting their potential

for improving tasks such as 3D object detection and semantic segmentation.

The structure of this thesis is organized as follows: Chapter 2 presents the theoretical
background, where the main sensors used in autonomous vehicles are discussed, highlighting
their utilities and limitations in different contexts. Additionally, fusion methods are presented,
ranging from classical approaches to more modern ones, with taxonomic distinctions. The chapter
also explores segmentation and 3D object detection, providing an introductory explanation and
examining various approaches used in the field. At the end of Chapter 2, attention mechanisms

are discussed.

Chapter 3 presents the related work, beginning with an explanation of BEVFusion,
its functionality, and contributions. Then, other studies that employed attention mechanisms
for multi-sensory fusion in autonomous vehicles, particularly for segmentation and 3D object

detection tasks, are discussed.

Chapter 4 details the work carried out in this research, including the materials and

resources used, as well as the evaluation methods employed.

Finally, Chapter 5 presents the final and conclusive results, providing an overview of the

findings achieved during the development of this thesis.






29

CHAPTER

THEORETICAL BACKGROUND

This chapter establishes the essential theoretical foundation for conducting the present
research. We present fundamental concepts related to sensing in autonomous vehicles, elucidating
the basic functioning of these sensors, the various types available, the data formats they generate,
and their representations. We explore the individual advantages and disadvantages of each sensor
and discuss how data fusion can enhance their complementarities. Special emphasis is placed
on segmentation and 3D object detection, the central focus of this research, highlighting its
applications in autonomous vehicles, the prominent challenges in this domain, and the rationale
for directing resources and efforts toward this specific area. We conclude by discussing the
attention mechanism, providing an overview and outlining the specific methods that will be

explored in this thesis to perform multi-sensory fusion.

2.1 Sensors in Autonomous Vehicles

The growing demand for innovation in the automotive industry has driven the accelerated
development of technologies aimed at transforming conventional driving into a safer, more
efficient, and autonomous experience. The implementation of sensors in autonomous vehicles
has emerged as a fundamental pillar for realizing this transformative vision. These sensory
devices play a crucial role in collecting information from the surrounding environment, enabling

autonomous vehicles to interpret and react intelligently to various situations.

The relevance of sensors is intrinsic to their ability to provide precise, real-time data
about the vehicle’s surroundings, ensuring continuous environmental perception. By equipping
vehicles with advanced sensory systems, it becomes possible not only to detect obstacles but
also to interpret traffic signals, identify pedestrians, and anticipate complex traffic conditions.
This perception capability is essential to ensure the safety of occupants and other road users, as

well as to optimize the operational efficiency of autonomous vehicles.
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Among the various types of sensors used in this context, cameras, LiDAR, and RADAR
stand out. Each of these devices presents distinct characteristics that complement each other
to provide a comprehensive view of the environment. Cameras, for instance, capture visual
information, while LiDAR uses lasers to measure distances with precision, and RADAR employs
radio waves to detect objects and calculate their distances. These three types of sensors, in
particular, will be discussed in subsequent subsections, allowing for a more in-depth analysis of
their functionalities, advantages, and challenges inherent to their implementation in autonomous

vehicles.

2.1.1 Camera

Cameras play an essential role in the visual perception capability of autonomous vehicles,
as they are responsible for capturing images and videos that allow data processing systems to
interpret and understand the topography of the surrounding environment. Crucial for obstacle
detection, traffic sign recognition, and facilitating autonomous navigation, this sensory com-
ponent plays a key role in the safety and operational effectiveness of these vehicles. In this
chapter, three main types of cameras will be thoroughly addressed and explained: RGB, thermal,
and stereoscopic cameras, highlighting their distinct characteristics, advantages, and challenges

inherent to their implementation in autonomous vehicles.

The use of Red Green Blue (RGB) cameras in autonomous vehicles is widely spread due
to their simplicity, low cost, and ability to capture color visual information. RGB cameras play a
fundamental role in computer vision, providing an accurate representation of the surrounding
environment. These cameras can detect nuances of color, textures, and details, allowing for
precise object identification and a more sophisticated interpretation of the road scenario. Their
cost-effectiveness makes them an economical choice for large-scale implementation, favoring

their widespread adoption in autonomous systems.

The incorporation of thermal cameras in autonomous vehicles represents an innovative
approach to environmental perception, particularly in challenging visibility conditions. Thermal
cameras, sensitive to thermal radiation, offer a significant advantage in low-visibility environ-
ments, such as at night or in situations of heavy fog. The ability of these cameras to capture
temperature-based images provides a complementary view to those obtained by traditional visual
cameras. The usefulness of thermal cameras in detecting objects based on their heat, even in
complete darkness, stands out as a key contribution to the safety and operational effectiveness of

autonomous vehicles.

In the diagram presented in Figure 4, two images are shown, one captured by an RGB
camera (on the left) and one captured by a thermal camera (on the right). It can be seen that,
in the RGB image, the environment faces low-light conditions, making it impossible to see the
background of the scene, with only the foreground of a moving pedestrian in front of the vehicle

being discernible. In contrast, with the thermal camera, parked vehicles in the background can
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be discerned, although without the precision of color detail. This analysis clearly highlights the
disparity between the capabilities of these two cameras, emphasizing the complementarity of

their use to optimize perception in autonomous vehicles.

Figure 4 — Comparison of images obtained from the RGB camera (left) and thermal camera (right) taken
from the ForesightAuto page. (DANZIGER, 2020).

The application of stereoscopic cameras in autonomous vehicles is an essential approach
to enhance the three-dimensional perception of the surrounding environment. These cameras
operate in pairs, allowing the capture of images with disparity, which is then processed to calcu-
late the distance of objects. This technique provides a deeper, more detailed view, significantly
contributing to obstacle detection and the accurate interpretation of the environment’s topography.
The use of stereoscopic cameras, therefore, plays a crucial role in improving the visual perception
capability of autonomous vehicles, strengthening safety and effectiveness in various driving

scenarios.

However, it is crucial to consider the disadvantages associated with the use of cameras.
Cameras can be sensitive to poor lighting conditions, negatively affecting their performance.
Additionally, in adverse weather conditions, such as heavy rain or snow, the effectiveness of
cameras may be compromised, posing a significant challenge for autonomous driving in diverse

environments.

The complexity of image processing is also an important consideration. The high com-
putational power required to interpret visual data can impact the overall performance of the

autonomous system, necessitating efficient data processing solutions.

The mono RGB camera is often chosen due to its lower cost and ability to capture
color visual information. Thermal cameras typically do not provide color information but are
an excellent complement to RGB cameras. Stereoscopic cameras tend to be more expensive
and operate at a lower frame rate and resolution, but their main advantage is providing depth

information about the environment. However, by using a multi-camera system or combining
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information provided by LiDAR, it is possible to achieve similar results to those obtained with

stereoscopic cameras, making the mono RGB camera a more attractive option.

2.1.2 LiDAR

Providing a detailed three-dimensional view of the surroundings, LiDAR systems are
essential for the environmental perception of autonomous vehicles, playing a crucial role. This
technology relies on emitting laser light pulses and measuring the time it takes for them to
return, allowing the creation of precise and up-to-date maps of the surrounding environment. The
implementation of LiDAR is critical for obtaining accurate data about the terrain’s topography
and detecting objects in the surroundings, significantly contributing to the safety and operational

effectiveness of autonomous vehicles.

Within the LiDAR category, two main types stand out: solid-state LIDAR and mobile
LiDAR. Solid-state LiDAR is characterized by the absence of moving parts in its internal com-
ponents, providing robustness to the system and making it suitable for automotive environments,
where durability and resistance to vibrations are essential. The viability and effectiveness of mo-
bile LiDAR are supported by the ability of these systems to perform dynamic scans in real-time,

making them particularly valuable for applications such as road and urban environment mapping.

The data format produced by LiDAR is crucial for subsequent interpretation. LiDAR
systems generate point clouds that can be either two-dimensional (2D) or three-dimensional (3D),
providing detailed information about the topography and position of objects in the environment.
The sparsity of the data is also a significant characteristic, representing the density or dispersion

of the points, serving as a valuable parameter for optimizing computational efficiency.

In Figure 5, two representations of point clouds obtained by LiDAR are presented. On
the left, the point cloud resulting from a single-beam LiDAR (2D) is observed, while on the
right, the corresponding representation generated by a multi-beam LiDAR (3D) is shown. The
distinction between both is evident, highlighting that the 3D LiDAR provides a more detailed
visualization. These additional details are particularly valuable in contexts related to autonomous
driving, especially in perception tasks, where understanding the three-dimensional shape of
obstacles is crucial.

Although LiDAR sensors are crucial for perception in autonomous vehicles, there are
specific situations where they may encounter challenges or failures in object identification.
Adverse weather conditions, such as heavy fog, rain, or snow, pose significant challenges for
LiDAR sensors, as water or snow particles can scatter the laser light, impairing the accuracy
of measurements. Additionally, highly reflective surfaces, such as mirrors or glass, can result
in unwanted reflections, leading to incorrect interpretations of the environment. In dense urban
environments, where multiple objects are close to each other, the phenomenon known as “oc-

clusion" can occur, causing the LiDAR to fail to detect objects hidden behind closer obstacles.
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Figure 5 — Comparison of 2D (left) and 3D (right) LiDAR Point Cloud Images (ROBOSENSE. . ., 2022).

2D LiDAR Point Cloud 3D LiDAR Point Cloud

Similarly, in cases of partial occlusion, where only parts of an object are visible, the LiDAR’s

ability to reconstruct the complete shape may be limited.

2.1.3 Radar

Radar sensors are essential components in object perception for autonomous vehicles,
providing valuable information about the surrounding environment. These devices emit radio
waves and record the time it takes for these waves to return after interacting with nearby objects.
In this way, RADAR provides fundamental data on the distance, speed, and direction of objects,

playing a crucial role in obstacle detection, collision prevention, and ensuring safe navigation.

The operation of RADAR is based on the principle of electromagnetic waves that
propagate through space, reflecting off objects in the environment. By measuring the return
time of these waves, RADAR calculates the distance to objects, enabling efficient and accurate

perception.

RADAR excels in various situations, being particularly effective in adverse weather
conditions, such as fog, rain, or darkness, where other sensors may struggle. Additionally, its
ability to penetrate visual obstacles, such as dense foliage, makes it a valuable choice for urban

environments and areas with high traffic density.

However, RADAR presents limitations in high object-density situations, such as con-
gested urban environments, where individual obstacle identification can be challenging. The
accuracy of RADAR can also be affected by unwanted reflections, multiple reflections, and
partial occlusions, resulting in a less reliable interpretation of the environment. Furthermore,

objects with absorbent or poorly reflective surfaces may not be adequately detected.
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Four formats stand out in processing this sensor, as pointed out by Srivastav and Mandal
(2023): the RAD Tensor, a three-dimensional representation after the Fast Fourier Transform
(FFT), provides a comprehensive view allowing direct inference of attributes; the Range-Azimuth
Heatmap, a two-dimensional image obtained by compressing the Doppler dimension of the RAD
Tensor; the Radar Point Cloud, a sparse three-dimensional representation valuable for detection
and classification; and the Micro-Doppler Spectrogram, a two-dimensional representation that
highlights distinctive movement features. By incorporating these formats into deep learning
models, it is possible to richly explore RADAR information to enhance object detection and
classification, contributing to the effectiveness and safety of autonomous driving (SRIVASTAV;
MANDAL, 2023).

In summary, Figure 6 illustrates the overall concept of sensor quality for specific tasks
under different conditions. The key conclusion is that, in each scenario, one sensor will perform
well while others may not achieve the same level of accuracy. However, the combination of
multiple sensors of different modalities provides both complementarity and redundancy, ensuring

that sensor fusion consistently achieves excellent performance across all tasks and conditions.

Figure 6 — Main sensors used in autonomous vehicles and their performance under different conditions.
Adapted from (UDACITY, 2025).
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2.2 Bird’'s-Eye View Representation

Visual representations play a crucial role in the perception of autonomous vehicles, pro-
viding essential information for decision-making. Among the various approaches, two commonly
used representations are BEV and perspective. The perspective representation, captured from the

vehicle’s point of view, is effective in identifying details and understanding traffic rules. On the
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other hand, BEV offers an overhead view, similar to that observed by a camera placed above the

vehicle, standing out for its ability to provide a global view of the environment.

BEV stands out compared to perspective for perception tasks in autonomous vehicles due
to several advantages. While perspective depicts the scene from the point of view of a camera
mounted on the vehicle, BEV provides an orthographic top-down projection, eliminating the
perspective distortion associated with perspective. The orthographic projection of BEV preserves
the metric relationships and provides a more accurate representation of distances and sizes of
objects in the scene. This is crucial for applications such as obstacle detection and trajectory

planning, where accuracy in spatial information is essential.

Obtaining BEV representations from perspective is a beneficial and practically feasible
strategy for vision systems in autonomous vehicles, despite the additional computational cost
associated with the perspective-to-BEV transformation algorithm, which, under certain hard-
ware configurations, may not be viable for real-time execution. The perspective representation,
captured by cameras mounted on the vehicle, provides detailed information about the scene, in-
cluding its height dimension. Classical methods, such as Inverse Perspective Transformation, rely
on geometric strategies to generate BEV representations from multiple cameras. However, these
methods often introduce distortions and are sensitive to calibration errors. With the advancement
of deep learning techniques, modern approaches have emerged that aim to directly learn the
transformation between perspective and BEV, training neural networks to overcome limitations
related to scale variations, occlusions, and geometric inconsistencies. While these learning-based
approaches improve robustness and adaptability, their computational demands must be carefully

considered, especially for real-time deployment in resource-constrained environments.

In the context of LiDARSs, the BEV representation is often obtained directly from
the three-dimensional data, providing a detailed visualization of the spatial distribution of
objects. The ability of BEV to offer a global, undistorted view, combined with its effectiveness
in occlusion detection and accurate spatial representation, makes it a fundamental choice in
autonomous vehicle perception systems. These features are essential for making safe and efficient

decisions during navigation in complex and dynamic environments.

2.3 Multi-Sensor Fusion

As discussed in the previous sections, it is evident that each sensor has its own advantages
and disadvantages, operating more effectively under specific conditions. In certain scenarios,
one sensor may fail or provide a limited representation of the environment, while other sensors
may offer more comprehensive and detailed readings. For example, an RGB camera is capable
of capturing colour information, a characteristic that may be absent in LiDAR sensors. However,
LiDAR excels in providing detailed information about distance and the three-dimensional shape

of objects. This complementarity between the RGB camera and LiDAR can be leveraged to
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enrich environmental perception by combining colour information with spatial details.

Considering this complementarity, it becomes clear that the use of multiple sensors, each
operating uniquely, is more efficient than relying solely on one sensor. This approach allows the
sensors to work complementarily, combining different information synergistically to enhance
tasks such as object detection in autonomous vehicles. Additionally, the use of cameras, LiDAR,
and RADAR is not limited to object detection; these sensors play critical roles in various other

tasks such as navigation, obstacle recognition, and trajectory planning.

By employing a variety of sensors, redundancy in environmental information is also
achieved. This redundancy is crucial to ensure that critical information is captured, even in the
event of individual sensor failures or occlusions. This robust and integrated approach, which
explores the distinct capabilities of each sensor, significantly contributes to the reliability and

safety of autonomous vehicle systems in dynamic and challenging environments.

In the pursuit of effective multi-sensor fusion strategies, a wide range of techniques
and methods are available, categorized into three distinct groups as proposed by HU et al.
(2020). These categories include Probability-Based Methods, Classification-Based Methods, and
Inference-Based Methods. It is crucial to highlight that the choice between these methods should
be carefully considered, as each approach is better suited for specific tasks and is therefore not
universally applicable in all sensor fusion scenarios. The following are brief explanations of each

of these approaches.

2.3.1 Probability Based Methods

These methods focus on modelling the uncertainty associated with measurements, treat-
ing each sensor as a source of probabilistic information. The Extended Kalman Filter (CANAN;
AKKAYA; ERGINTAV, 2004) exemplifies the application of Bayesian principles, iteratively
adjusting probability distributions as new observations are acquired. Bayesian Networks, in turn,
offer an effective graphical representation of probabilistic relationships, suitable for integrating

complex information from various sensors.

Monte Carlo-based methods, such as Markov Chain Monte Carlo (SYKACEK; REZEK;
ROBERTS, 2000) and Sequential Monte Carlo (VEMULA; DJURIC, 2005), describe prob-
ability density through weighted samples, being highly flexible in dealing with non-linear
and non-Gaussian problems in state space models. Although more computationally intensive,
these methods provide flexibility in representing general probability distributions, making them

valuable for multi-sensor data fusion.

2.3.2 Classification Based Methods

These methods stand out in the classification of patterns and features extracted from

different sensory sources, providing a deeper understanding of the data. Machine learning
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algorithms, such as Support Vector Machines (BANERJEE; DAS, 2012) and Neural Networks,
play fundamental roles in this context. The fusion of results from these algorithms offers a more
comprehensive and robust representation of the environment. Voting approaches and ensemble
methods, such as Random Forests (LOUPPE, 2015), are common for combining results from

diverse classifiers, providing a more resilient approach to noise and variations in the input data.

2.3.3 Inference Based Methods

The multi-sensory fusion based on inference stands out for its use of statistical and logical
inference to combine heterogeneous information. The evidence theory, also known as Dempster-
Shafer theory (HAMDA; HADJALI; LAGHA, 2023), is crucial in this context, allowing for
handling the uncertainty and imprecision inherent in sensory data. Furthermore, fuzzy logic
provides a flexible way to deal with uncertainty, allowing the representation of vague concepts.
Data fusion through fuzzy logic (ROTH; SCHILLING, 1995) is especially useful when the
boundaries between classes are fuzzy, enabling a smoother integration of sensory information.
Inferential methods, such as Bayesian networks (SMAILI; NAJJAR; CHARPILLET, 2007), are
employed to model the relationship between different variables and make inferences about the

state of the environment.

Another perspective for classifying the methods lies in the point at which the fusion
is executed, as pointed out by Alaba, Gurbuz and Ball (2022) and Fayyad et al. (2020). Thus,
there are methods that perform fusion at an early stage, combining the information without prior
processing into a single representation to be analysed. At an intermediate stage, each piece of
information from the sensors is pre-processed individually before being integrated. Finally, at
a more advanced stage, all processing and decision-making occur after fusion in an integrated
manner. Figure 7 visually illustrates these methods. Although this thesis focuses on feature

fusion methods, brief explanations of each of these approaches will be presented next.

2.3.4 Data Fusion Methods

Data fusion is characterized by the grouping and direct combination of raw data, repre-
senting different sensors, at the initial stage of processing. This approach enables the creation of
a unified and integrated representation, where each type of information is considered simultane-

ously, providing a richer and more detailed view of the scenario.

However, data fusion also presents challenges. Differences in sampling rates, alignment,
and data representation between different sensors can complicate the fusion process. Synchro-
nization and the conversion of data into a synchronized feature vector are critical aspects in

dealing with these discrepancies.

Common methods of data fusion include concatenation and summation. Concatenation

is often used to increase the width of feature maps, providing a variety of inputs and details. On
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Figure 7 — Illustration of fusion methods categorized by stage: a) Data Fusion, b) Decision Fusion, and c)
Feature Fusion (ALABA; GURBUZ; BALL, 2022).
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the other hand, summation, based on the identity mapping technique, can reduce computational

load but may result in information loss during the reduction of feature map width.

2.3.5 Feature Fuse Methods

Unlike data fusion, which combines raw data from the initial stage of processing, feature
fusion occurs at an intermediate stage, after distinct features have been extracted from each
source. This allows for more refined and specialized manipulation of the features, as each data

set undergoes specific processes before fusion.

Several techniques are available to perform feature fusion. Concatenation is a common
strategy, where features extracted from different sources are simply concatenated into a single

vector. This method increases the dimensionality of the feature space, allowing the system to
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capture a broader range of information.

Another approach is feature weighting, where weights are assigned to each set of features
before fusion. These weights can be learned during model training, allowing for dynamic

adaptation to the relative importance of each source.

2.3.6 Decision Fusion Methods

Unlike data fusion and feature fusion, which occur at the early or intermediate stages,
decision fusion focuses on the combination of final results or decisions. This approach is
particularly useful in scenarios where different information sources may generate partial decisions
or predictions, and integrating these decisions can lead to a more reliable and comprehensive

conclusion.

There are several techniques for performing decision fusion. A common approach is
voting, where individual decisions are weighted according to their confidence or associated
probability. This can be implemented through majority voting, weighted voting, or other decision

aggregation methods.

Another technique is rule-based fusion, where specific decisions are combined based on
predefined criteria. This may involve applying fusion rules, such as selecting the most frequent

decision or considering the most confident decision.

2.4 Segmentation

Segmentation is a fundamental task in computer vision that involves partitioning an
image, point cloud, or 3D data into distinct regions or objects based on visual or semantic
characteristics, which can be understood as a pixel-level classification (LIU et al., 2023). The
goal is to assign a label to each pixel (in 2D data) or point/voxel (in 3D data) to understand
and interpret scenes at a granular level. This fine-grained classification enables a more detailed
and structured representation of the environment, facilitating downstream tasks such as object
detection and scene understanding. Segmentation serves as a critical step in numerous appli-
cations, including autonomous vehicles (GAUTAM; MATHURIA; MEENA, 2022b), robotics
(HURTADO; VALADA, 2024), and medical imaging (WANG et al., 2022).

In contrast to object detection, which focuses on identifying and localizing objects
within bounding boxes, segmentation provides a more refined understanding by delineating the
precise boundaries of objects and regions. This capability is especially valuable in scenarios
requiring detailed spatial awareness, such as obstacle avoidance in autonomous vehicles or

tumour identification in medical imaging.

Segmentation can be categorized into three main types: semantic segmentation, instance

segmentation, and panoptic segmentation. Each type serves a specific purpose, depending on
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the requirements of the application, and addresses unique challenges in understanding scenes or

objects.

Semantic segmentation focuses on assigning a class label to every pixel or point in an
image or 3D space (SEVAK et al., 2017). The objective is to group all elements belonging to the
same class, such as roads, sidewalks, or buildings, into a unified representation. For example,
in an urban scene, a semantic segmentation model would label all roads with one colour, all
sidewalks with another, and buildings with a third. While semantic segmentation provides a high-
level understanding of the environment, it does not differentiate between individual instances of
the same class. For instance, two cars in a scene would be grouped under the same label, making
it impossible to distinguish between them. This type of segmentation is particularly valuable in
applications like autonomous driving, where the identification of general areas such as drivable

regions is critical.

Instance segmentation builds upon semantic segmentation by distinguishing between
different instances of the same class (HAFIZ; BHAT, 2020). While semantic segmentation groups
all elements of a class together, instance segmentation assigns unique identifiers to each object
within a class. For example, in an urban scene, instance segmentation would not only identify
cars but also distinguish between individual cars in the scene, assigning each one a distinct
label. This capability is crucial for tasks like tracking multiple objects or analysing crowded
environments, where differentiating between objects of the same class is necessary. Instance
segmentation is widely used in autonomous driving, robotics, and surveillance applications,

where precise object-level understanding is essential.

Panoptic segmentation combines the strengths of both semantic and instance segmenta-
tion, providing a comprehensive understanding of a scene by segmenting all pixels into either
a “thing" or a “stuft" category (ELHARROUSS et al., 2021). “Things" are countable objects,
such as cars, pedestrians, or bicycles, while “stuff" refers to amorphous regions, such as roads,
sky, or vegetation. Panoptic segmentation not only labels individual instances of objects but
also segments uncountable regions, offering a unified framework for obtaining a complete scene
understanding. For example, in an urban scene, panoptic segmentation would identify individual
cars and pedestrians while also labelling the surrounding roads and sidewalks. This holistic ap-
proach is particularly advantageous in tasks like autonomous driving and environmental mapping,

where both object-level detail and scene context are crucial for decision-making.

Each type of segmentation plays a unique role in interpreting scenes and objects, ad-
dressing specific needs across a wide range of applications. The three types of segmentation
can be visualized in Figure 8, which shows the original image alongside the results of semantic,

instance, and panoptic segmentation.

Evaluating segmentation models requires robust and reliable metrics that measure their
performance in capturing and labelling various regions or objects in an image or 3D scene.

Among the most commonly used metrics in segmentation tasks are the mean Intersection over
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Figure 8 — Examples of the three types of segmentation. Image adapted from (COSTEA; PETROVALI,
NEDEVSCHI, 2018).
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Union (mloU) and the Dice coefficient, which provide detailed insights into the accuracy and
completeness of segmentation outputs. These metrics are widely used due to their ability to
quantify the overlap and consistency between predicted and ground truth labels, making them

essential for comparing models and optimizing performance.

The mloU is one of the most fundamental metrics for segmentation evaluation. It quan-
tifies the overlap between the predicted segmentation and the ground truth, offering a clear

measurement of accuracy. For a single class, the IoU is calculated as:

Area of Overlap  |PNG|

IoU = =
? Area of Union  |PUG]|

where P represents the set of pixels or points predicted as belonging to a class, and G represents
the corresponding ground truth set. The IoU ranges from O to 1, with higher values indicating
better performance. A perfect IoU of 1 signifies complete alignment between the prediction and

the ground truth, while lower values indicate discrepancies (MINAEE et al., 2020).

The mloU extends this calculation across all classes in the dataset and averages the IoU
values, providing a single score that summarizes the model’s performance. The formula for

mloU is given as:

1N
IoU = — ) IoU;
mlo N;Ol

where N is the number of classes, and IoU; is the IoU for class i. The mlIoU is particularly valuable
in segmentation tasks involving multiple object categories, as it accounts for the performance
across all classes, ensuring that the model’s effectiveness is evaluated comprehensively. This

metric is favoured for its interpretability and ability to reflect both false positives and false
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negatives, which are critical in applications like autonomous driving and medical imaging (HE
etal.,2024).

The Dice coefficient, also known as the Sgrensen-Dice index, is another widely used
metric in segmentation. It measures the similarity between the predicted and ground truth regions

and is defined as:
2-|PNG|

Dice = ————
1P| +]G]

where |P| is the size of the predicted region, |G| is the size of the ground truth region, and [PN G|
is the size of their overlap. The Dice coefficient also ranges from O to 1, with higher values
indicating better segmentation accuracy. A Dice score of 1 represents perfect overlap between

the prediction and the ground truth.

The Dice coefficient emphasizes the overlap between the predicted and ground truth
regions while being less sensitive to class imbalance compared to IoU. This property makes it
particularly useful in medical imaging and other applications where certain classes may dominate
the dataset. Additionally, the Dice coefficient is symmetric, meaning that interchanging the

predicted and ground truth labels does not affect the score, ensuring consistency in evaluation.

Both mloU and the Dice coefficient are widely used due to their complementary strengths
in evaluating segmentation models. The mloU is effective at penalizing both false positives
and false negatives, making it suitable for applications requiring a balanced assessment of
accuracy. On the other hand, the Dice coefficient is particularly advantageous in scenarios with
class imbalance, as it provides a more forgiving evaluation of minority classes. This makes it
invaluable in fields like medical imaging, where certain regions of interest may be significantly

smaller than others.

Moreover, these metrics are interpretable and easily computable, making them ideal
for comparing models and tracking improvements during training. By considering the overlap
and consistency between predicted and ground truth regions, mloU and Dice provide reliable
indicators of a model’s ability to perform precise and accurate segmentation. These metrics have
become standard benchmarks in the segmentation literature and continue to guide advancements
in the field.

According to Minaee et al.(MINAEE et al., 2020), the models used for segmentation
can be categorized into distinct types based on their underlying architectural principles. This
classification highlights the core contributions of each model architecture, such as the use of
encoder-decoder frameworks, multi-scale analysis, skip connections, and advanced techniques
like dilated convolutions. While segmentation models can also be grouped by their specific
goals—such as semantic, instance, or panoptic segmentation—the architectural grouping offers
a more consistent perspective given the diversity and volume of work in these areas. The
following subsections provide a detailed explanation of each type of model used for segmentation,

emphasizing their unique architectural characteristics and advancements.



2.4. Segmentation 43

2.4.1 Fully Convolutional Networks

Fully Convolutional Networks (FCNs) are foundational models in semantic segmentation
that replace the fully connected layers in traditional Convolutional Neural Networks (CNN) with
fully convolutional layers. This design allows FCNs to process images of arbitrary sizes and pro-
duce spatially aligned segmentation maps of the same resolution as the input. By integrating skip
connections, FCNs combine fine-grained low-level features with high-level contextual features,
improving accuracy in segmentation tasks. Notable works such as those by Long, Shelhamer and
Darrell (2015) and Liu, Rabinovich and Berg (2015) demonstrated the applicability of FCNs

across various domains, laying the groundwork for subsequent advancements in segmentation.

2.4.2 Convolutional Models With Graphical Models

Convolutional models combined with graphical models, such as Conditional Random
Fields, aim to refine segmentation outputs by imposing spatial consistency. While convolutional
layers excel at extracting local features, graphical models enforce global coherence by accounting
for the relationships between neighbouring pixels or regions. This synergy enhances segmentation
accuracy, particularly in scenarios with complex boundaries. Works like Zheng et al. (2015),
Chen et al. (2016), Lin et al. (2016) and Liu et al. (2015) demonstrated the effectiveness of

integrating CRFs into segmentation pipelines, setting a precedent for hybrid approaches.

2.4.3 Encoder-Decoder Based Models

Encoder-decoder architectures are widely used in segmentation due to their ability to
capture both global context and fine-grained details. The encoder compresses the input into a
compact representation, while the decoder reconstructs the segmentation map at the original
resolution. Models like U-Net (RONNEBERGER; FISCHER; BROX, 2015) and its evolutions
such as works by Cicek er al. (2016), Zhou et al. (2018) and Zhang, Liu and Wang (2018)
leverage symmetric skip connections, allowing the decoder to utilize spatial details from the
encoder. These architectures have been particularly successful in medical imaging and satellite

imagery, demonstrating robustness and flexibility across applications.

2.4.4 Multi-Scale and Pyramid Network Based Models

Multi-scale and pyramid network models are designed to capture features at various
resolutions, enabling them to handle objects of different sizes effectively. Techniques such as the
Pyramid Scene Parsing Network (PSPNet) (ZHAO et al., 2017) and Feature Pyramid Networks
(FPN) (LIN et al., 2017) employ hierarchical pooling and multi-scale feature fusion to aggregate
global and local context. These methods excel in urban scene segmentation, where objects like

pedestrians and vehicles vary significantly in scale.
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2.4.5 R-CNN Based Models

R-CNN-based models adapt the region proposal techniques used in object detection for
segmentation tasks. By generating region proposals and applying segmentation algorithms within
each region, these models achieve high accuracy, especially for instance segmentation. Mask
R-CNN (HE et al., 2018) extends Faster R-CNN (REN ez al., 2016) by adding a segmentation
branch, making it a popular choice for tasks requiring precise instance-level delineation, such as

autonomous driving and robotics.

2.4.6 Dilated Convolutional Models and DeeplLab Family

Dilated convolutions, also known as atrous convolutions, allow networks to expand
their receptive fields without increasing the number of parameters. This capability is central
to the DeepLab family (CHEN ez al., 2017) of models, which integrates dilated convolutions
with pyramid pooling modules to capture both local and global context. DeepLabv3+ (CHEN
et al., 2018) is a state-of-the-art model that combines encoder-decoder structures with dilated

convolutions, achieving exceptional performance in semantic segmentation benchmarks.

2.4.7 Recurrent Neural Network Based Models

Recurrent Neural Networks (RNNs) are incorporated into segmentation pipelines to
model sequential and spatial dependencies in the data. Variants such as Long Short-Term Memory
(LSTM) networks are particularly effective in capturing temporal and spatial relationships,
making them suitable for video segmentation. Works like those of Visin et al. (2016) and Byeon
et al. (2015), Liang et al. (2016) demonstrate the potential of RNNs in improving segmentation

consistency over time and space.

2.4.8 Generative Models and Adversarial Training

Generative models, including Generative Adversarial Networks (GANSs), are employed
in segmentation to improve the quality and realism of predictions. Adversarial training involves
a generator producing segmentation maps and a discriminator evaluating their realism. This
approach encourages the generator to produce more accurate outputs, as demonstrated by works
such as Luc et al. (2016). GAN-based methods are particularly effective in applications like

medical imaging, where data is limited, and realistic augmentations are essential.

According to He et al. (2024), 3D segmentation can be addressed using various ap-
proaches depending on the type of data representation and the specific requirements of the
application. Unlike 2D segmentation, 3D segmentation involves understanding and labelling vol-
umetric data or point clouds, providing a richer spatial and geometric context for applications such
as autonomous navigation, medical imaging, and robotics. By analysing the three-dimensional

structure of scenes, 3D segmentation enables a more precise identification and differentiation
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of objects or regions in a given environment. The methods for 3D segmentation are often cat-
egorized based on how the data is represented and processed, such as using RGB-D images,
projected 2D images, voxel grids, or raw point clouds. The following subsections provide a
detailed exploration of each of these approaches, highlighting their characteristics, challenges,

and notable contributions in the field.

2.4.9 RGB-D Based Segmentation

RGB-D based segmentation leverages RGB images combined with depth information
to enhance segmentation tasks. Depth data provides additional geometric context that helps
differentiate objects in a scene. The primary advantage of RGB-D segmentation lies in its ability
to disambiguate objects that may appear similar in RGB space but differ in depth. This method
has been widely applied in indoor scenes, where depth cameras like Kinect are commonly
used. Several works have explored RGB-D segmentation, including Gupta et al. (2014), which
introduced a multi-modal network combining RGB and depth features. Other notable approaches
include works by Qi ef al. (2017¢) and Hazirbas et al. (2017), which proposed novel fusion
strategies to integrate RGB and depth data effectively. These methods have been pivotal in

advancing segmentation accuracy in complex environments.

2.4.10 Projected Images Based Segmentation

Projected images based segmentation focuses on transforming 3D point clouds or voxel
grids into 2D images through projections. This approach enables the use of established 2D
segmentation networks on 3D data, significantly reducing computational complexity. Common
projection techniques include spherical, cylindrical, or BEV projections. Works like Xu et al.
(2021) demonstrated the effectiveness of this method by projecting 3D data onto 2D planes for
efficient processing. Similarly, Guerry et al. (2017) extended this idea by integrating multi-view
projections to improve segmentation accuracy. These methods offer a practical trade-off between
efficiency and performance, making them suitable for real-time applications such as autonomous

driving.

2.4.11 Voxel-Based Segmentation

Voxel-based segmentation represents 3D data as a structured grid of voxels, enabling the
application of CNNs designed for 3D volumetric data. This representation facilitates spatially
consistent feature extraction but introduces challenges such as high memory consumption and
computational overhead for large-scale datasets. Notable works in voxel-based segmentation in-
clude VoxNet by Raj, Maturana and Scherer (2015), which employs a 3D CNN for segmentation,
and the work by Graham, Engelcke and Maaten (2017), which introduced sparse convolutions
to address the memory efficiency issue. These methods are particularly effective in scenarios

requiring detailed 3D representations, such as medical imaging and architectural modelling.
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2.4.12 Point-Based Segmentation

Point-based segmentation operates directly on raw 3D point clouds without converting
the data into intermediate representations like voxels or projections. This approach preserves
the fine-grained details of the original 3D data, making it ideal for tasks that require high
spatial resolution. PointNet by Qi et al. (2017a) is a seminal work in this domain, introducing a
neural network architecture that processes unordered point clouds. Subsequent improvements,
such as PointNet++ (QI et al., 2017b), added hierarchical feature extraction to capture local
structures. Other works, like those by Thomas et al. (2024), proposed advanced point-based
networks incorporating attention mechanisms to further improve segmentation performance.

These methods are widely used in autonomous navigation, robotics, and object recognition tasks.

2.5 3D Object Detection

3D object detection is a crucial area in the field of computer vision, playing an essential
role in various applications such as autonomous vehicles, augmented reality, and industrial
automation. Unlike 2D object detection, which focuses solely on location and classification in a
single image, 3D object detection aims to understand the three-dimensional position of objects
in space. This complex process involves not only identifying the presence of objects but also

estimating their 3D coordinates and orientations.

There are various approaches to perform 3D object detection (ARNOLD et al., 2019),
and the choice of method often depends on the type of sensor available and the specifics of the
application. A common approach is the use of individual sensors, such as LIDAR, RADAR, stereo
cameras, or camera arrays. Each type of sensor provides unique information, and algorithms are
tailored to extract specific features from each modality (QIAN; LAI; LI, 2022).

LiDAR sensors are frequently employed in 3D object detection due to their ability to
measure distances with high precision. By emitting laser pulses and measuring the time it takes
for them to return, LIDARSs provide information about the scene’s geometry. LIDAR-specific
detection algorithms process 3D point clouds to identify objects and estimate their geometric

properties.

RADAR, in turn, is effective in adverse conditions, such as fog or low visibility. Its ability
to measure the reflectance of objects and detect motion makes it a valuable choice, especially in

autonomous driving scenarios.

Stereo cameras, by capturing two simultaneous images of the same scene from slightly
different angles, allow for depth information to be obtained. The disparity between the images is
used to calculate the distances to objects in the three-dimensional scene. Algorithms specific to

stereo cameras, often based on visual feature matching, are applied to perform 3D detection.

The use of camera arrays is also common, particularly in omnidirectional vision appli-
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cations. By positioning cameras in different directions, it is possible to capture comprehensive

information about the environment, enabling more complete object detection.

In addition to these approaches with individual sensors, 3D object detection can also
benefit from data fusion from multiple sensors (MAO et al., 2023). Combining LiDAR, cameras,
and RADAR, for example, allows for the creation of more robust systems that are resilient to
different environmental conditions. Data fusion can be achieved through techniques such as
multimodal sensor fusion and extended Kalman filtering algorithms, providing a more compre-
hensive and reliable view of the three-dimensional environment. By integrating complementary
information from different sensors, 3D object detection systems become better equipped to
handle various challenges, contributing to safety and effectiveness in a range of applications,

such as autonomous vehicles and industrial monitoring.

The 3D object detection process involves two main tasks: bounding box regression
and classification. These tasks are essential for locating and identifying objects in the three-
dimensional scene (QIAN; LAI; LI, 2022).

Bounding box regression is responsible for determining the precise location of the object
in the scene, defining a bounding box that encompasses the object. This is typically expressed
in three-dimensional coordinates, such as height, width, and depth. Specific algorithms, such
as those used in CNN or machine learning algorithms, are trained to learn patterns in the data
and perform this regression. In neural networks, dedicated regression layers at the end of the

architecture are often used to estimate the bounding box coordinates.

Classification, on the other hand, refers to assigning a category or label to the detected
object. Each object belongs to a specific class, such as car, pedestrian, or bicycle, and is associated
with a unique identifier. Again, neural networks play a crucial role in this task, learning to
distinguish visual and geometric features that characterize each object class. Classification layers

typically precede or follow the regression layers in the network architecture.

The combination of these two tasks allows the detection system to locate and identify
objects in a 3D environment. During training, algorithms are fed with labelled datasets, where the
bounding box coordinates and object categories are provided. The algorithm adjusts its internal
parameters to minimize the difference between predictions and the labels provided in the training
data.

Accurate evaluation of 3D object detection algorithms is essential to measure the perfor-
mance and reliability of these models. Two key metrics in this context are IoU and the Average
Precision (AP) or mean Average Precision (mAP) (QIAN; LAI; LI, 2022).

IoU is a crucial metric that quantifies the overlap between the bounding box predicted

by the model and the ground truth bounding box of the object. Expressed as the ratio between

Intersection Area

the intersection area and the union area, IoU is calculated by the formula JoU = =5 =250

An IoU of 1 indicates complete overlap, representing a perfect detection, while lower values
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indicate less overlap.

AP is a widely used metric for evaluating performance in object detection tasks. It mea-
sures the detection precision at different confidence levels and is calculated from the precision-
recall curve. AP is the average of precisions at all recall points and is especially relevant when

detections have varying confidence scores associated with them.

mAP is an extension of AP that considers the variation in accuracy rates across different
object categories. This is crucial in scenarios where the model needs to handle multiple object
classes. mAP provides a more comprehensive view of the model’s performance by aggregating
the AP for each class and presenting a single score that summarizes the overall quality of the

detections.

These metrics play a critical role in the objective evaluation of 3D object detection
models. IoU highlights spatial accuracy, while AP and mAP provide insights into the model’s
ability to handle varying confidence levels and object categories. By considering these metrics
together, researchers and professionals can gain a comprehensive understanding of the model’s

performance in challenging detection tasks in 3D environments.

According to the review by Arnold ef al. (2019), 3D detection methods are categorized
into three main groups: Image-Based Methods, Point Cloud-Based Methods, and Fusion Methods.
Each category addresses specific challenges related to obtaining accurate information about
the location and geometry of objects in the environment. In the following subsections, we will
explore each category in detail, presenting relevant approaches that play a significant role in

advancing these methods and in building robust and precise detection systems.

2.5.1 Image based methods

Image-based 3D detection methods focus on the precise estimation of 3D bounding boxes
using information from monocular cameras. These methods face the challenge of extracting
depth information from 2D images, as the z-dimension (depth) is not directly available. Here, we

explore some notable approaches within this category.

The Mono3D method, proposed by Chen et al. (2016), stands out for its simple approach
to proposing regions. Using context, semantics, projected shape features, and location priorities,
the algorithm generates proposals through an exhaustive search in 3D space, which are then
filtered by Non-Maximum Suppression. The next step involves using a Fast R-CNN model
trained with 2D images to score and regress the 3D bounding boxes. Surprisingly, even without

direct depth information, Mono3D outperforms previous methods.

The 3D Voxel Pattern (3DVP) approach, introduced by Xiang et al. (2015), innovates by
incorporating visibility patterns into the model. This unique representation models appearance
using RGB intensities, 3D shape as a set of voxels, and occlusion masks. The 3DVP patterns are

obtained through clustering, and classifiers are trained for each pattern, providing a robust way
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to distinguish visible, hidden, or truncated parts of objects. This technique proves effective in

retrieving relevant information for 3D detection.

The Deep MANTA method (CHABOT et al., 2017) extends the capabilities of previous
methods by adopting a many-task approach. This model uses a region-proposal network for 2D
bounding box regression and localization, followed by 3D shape inference through matching
with 3D models. By addressing multiple tasks simultaneously, such as vehicle position, part
localization, and shape, Deep MANTA offers a comprehensive solution for 3D object detection.
This approach stands out for its ability to consider multiple aspects simultaneously, providing a

more complete view of the environment surrounding the autonomous vehicle.

2.5.2 Cloud Point Based Methods

3D detection methods based on point clouds can be categorized into three main subgroups:

projection methods, volumetric methods, and point network-based methods.

Some methods based on Projection Based Methods, such as those proposed by Li, Zhang
and Xia (2016), use cylindrical or spherical projections to transform 3D points into a 2D image.
CNN can then be applied to these projections for object detection, followed by the regression of
the 3D bounding box’s dimensions and location. These approaches leverage the familiarity of
object detection techniques in 2D images. Other methods, such as those presented in (SIMON et
al.,2018), (YU et al., 2017), (BELTRAN et al., 2018), adopt the BEV projection to generate
3D proposals. The representation includes information about height, intensity, and point density.
Networks like Faster R-CNN (REN ez al., 2016) can be used for proposal generation and 3D
bounding box regression, although some methods, such as Complex-YOLO (SIMON et al.,
2018), adopt a single-stage detection approach for greater computational efficiency.

Some methods based on Volumetric Convolution Based Methods, such as those proposed
by (LI, 2017), (ENGELCKE et al., 2017), adopt a volumetric approach, considering a 3D grid
(voxel) representation of the scene. Fully CNN are applied directly to the volumetric representa-
tion. Although this approach explicitly encodes shape information, it is limited by efficiency, as

most of the volume consists of empty cells, which drastically increases the computational cost.

In contrast to projection methods or volumetric representations, point-net-based methods,
such as PointNet (QI et al., 2017a), treat the point cloud as direct input. These approaches aim to
reduce information loss caused by projections or quantizations in 3D space. PointNet uses fully
connected layers to perform point-wise transformations, aggregating global features through a
max-pooling layer. Extensions like PointNet++ (QI ef al., 2017b) enhance this architecture by
incorporating hierarchical structures for progressively encoding complex features.
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2.5.3 Fusion-Based Method

Given the individual limitations of modalities, fusion methods aim to combine infor-
mation from images and point clouds. As discussed in the Multi-Sensor Fusion section, the
fusion process can be implemented at the beginning, end, or deeply within the neural network
architecture. Examples include MV3D (CHEN et al., 2017), which uses a deep fusion approach,
and AVOD (KU et al., 2018), which proposes fusion at the beginning of the process. Informa-
tion fusion provides an advantage by leveraging complementary data to improve 3D detection

performance.

2.6 Attention Mechanisms

The rapid advancements in deep neural networks have driven the need for more sophis-
ticated mechanisms capable of processing and interpreting complex data effectively. In this
context, attention mechanisms have emerged as a cornerstone of modern neural architectures,
enabling models to selectively focus on the most relevant parts of the input while ignoring less
important details. This capability is particularly valuable for tasks that involve high-dimensional

or complex data, such as natural language processing, computer vision, and sensor fusion.

Attention mechanisms operate under the premise that not all parts of an input contribute
equally to solving a task. Inspired by the human visual system, these mechanisms dynamically
assign weights to input elements, allowing the model to “attend" to regions or features that are
most critical for the task at hand. This selective processing is especially beneficial when the input

is large, such as high-resolution images or dense 3D point clouds.

An example of how the attention mechanism works can be seen in Figure 9. In the
original image, a bird is present against a non-monochromatic background. If the goal is to
identify objects such as animals, the attention mechanism aims to create a representation of the
same dimensions as the original image, highlighting the regions that are most relevant to the task.
The resulting image on the right illustrates this process, where warmer colours indicate areas of
higher importance—primarily outlining the bird—while cooler colours represent less relevant

regions, such as the background, which can be ignored.

The development of attention mechanisms marked a significant milestone in deep learn-
ing, particularly in addressing the challenges posed by long-range dependencies in data. The
concept was first introduced by Bahdanau, Cho and Bengio (2016). in the context of machine
translation. In traditional sequence-to-sequence (seq2seq) models, information from the input
sequence was compressed into a single fixed-length vector, which often limited the model’s
ability to handle long or complex sequences. Bahdanau, Cho and Bengio (2016) proposed an
attention mechanism that allowed the decoder to dynamically focus on specific parts of the input

sequence at each step, improving alignment and overall translation performance.



2.6. Attention Mechanisms 51

Figure 9 — Example of an image recalibrated using attention mechanisms (right) compared to the original
(left). Adapted from (WU et al., 2023).

Building upon this foundational work, Vaswani et al. (2017). introduced the Transformer
architecture, which popularized the concept of self-attention . Unlike RNNs or LSTMs, which
process data sequentially, self-attention allows each element in the input sequence to attend
to all other elements simultaneously. This innovation not only improved the model’s ability
to capture long-range dependencies but also enabled efficient parallel processing, significantly
reducing training time and computational overhead. The Transformer’s success has influenced
advancements across multiple domains, including natural language processing (e.g., BERT
(DEVLIN et al., 2018)) and computer vision (e.g., Vision Transformers (DOSOVITSKIY et al.,
2021)).

Attention mechanisms can be categorized based on their operational behaviour and
range of focus. Self-attention allows input elements to interact with one another and identify
relationships within the same dataset, which is crucial for understanding contextual dependencies.
It forms the backbone of Transformer-based architectures and has been successfully adapted
to tasks such as spatial feature extraction in computer vision and sequence modeling in NLP
(VASWANI et al., 2017). In contrast, cross-attention enables one set of inputs to attend to another,
making it particularly effective for tasks involving multi-modal or multi-sensor data fusion. By
aligning features from different modalities, such as LiDAR point clouds and camera images,
cross-attention enhances the integration of complementary information, leading to more robust
performance.

Attention mechanisms can also be divided into global attention (LIU; SHAO; HOFF-
MANN, 2021) and local attention (AGUILERA-MARTOS et al., 2024). Global attention consid-
ers all elements of the input data simultaneously, which is ideal for tasks requiring contextual
awareness, such as machine translation and global feature analysis in images. However, this
approach comes with high computational costs, especially for large-scale inputs. In contrast, local
attention restricts the focus to a specific region of the input, reducing computational complexity
while maintaining accuracy for tasks where spatial locality is essential, such as object detection

and image segmentation.
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Another distinction lies between hard attention (MNIH e al., 2014) and soft attention
(HERMANN et al., 2015). Hard attention selects specific regions or elements of the input while
discarding the rest. This discrete approach is computationally efficient and interpretable but
non-differentiable, often requiring reinforcement learning for optimization. Soft attention, on
the other hand, assigns continuous weights to all input elements, enabling differentiability and
seamless integration into gradient-based training pipelines. Soft attention is widely adopted in

modern architectures, including Transformers, due to its flexibility and effectiveness.

Despite their widespread success, attention mechanisms face notable challenges and
limitations. A key issue is the high computational cost associated with global attention, where the
complexity grows quadratically with input size. This problem becomes particularly pronounced
in tasks involving large-scale data, such as high-resolution images, long text sequences, or
dense 3D point clouds. For example, processing LiDAR point clouds in autonomous driving
applications requires handling millions of points, leading to significant resource usage and

computational delays.

Scalability is another critical challenge when applying attention mechanisms to tasks
with large and complex datasets. In applications such as 3D segmentation or multi-sensor
fusion, datasets often contain unstructured and high-dimensional information, increasing memory
consumption and processing time. This challenge is further compounded in real-time systems,

where low-latency processing is crucial for performance.

To address these limitations, recent advancements have introduced more efficient forms of
attention. Sparse attention, for example, selectively applies attention to a subset of input elements,
reducing computational complexity while maintaining performance. Child et al. (CHILD et
al., 2019) introduced sparse Transformers that scale linearly or sub-linearly with input size,
making them suitable for large-scale tasks. Another promising solution is deformable attention,
proposed by Zhu et al. (ZHU et al., 2021), which focuses on a sparse set of key positions in the
input data. By dynamically learning these positions, deformable attention reduces computational
overhead while preserving accuracy, making it particularly effective for dense data such as 3D

point clouds.

In the scope of this thesis, attention mechanisms are explored for their potential in multi-
sensory fusion. Although these mechanisms were not originally developed for sensor fusion,
their ability to selectively highlight relevant features makes them well-suited for integrating
multi-modal data in tasks such as 3D object detection and segmentation. The application of these
methods to sensor fusion will be further elaborated in the following chapters, with a particular

focus on their innovative adaptation to handle complex and heterogeneous inputs.



53

CHAPTER

RELATED WORK

This chapter is organized as follows: the first section provides a detailed analysis of
BEVFusion (LIU et al., 2022) and its contributions to the field; the second and third sections
explore related studies that investigate attention mechanisms for multi-sensory fusion, both in
specific contexts—such as segmentation and 3D object detection in autonomous vehicles—and
in other application areas involving multiple sensors across various domains. The introduction to
this chapter presents an overview of the relevant studies that underpin this research, with a focus
on enhancing the efficiency of segmentation and 3D object detection through the implementation

of attention mechanisms for multi-sensory fusion, using BEVFusion as the initial reference.

3.1 BEVFusion

BEVFusion is an efficient and generic multi-sensory fusion framework designed to
address the complexity of 3D perception in autonomous driving environments (LIU et al., 2022).
This innovative method unifies multimodal features into a shared BEV representation space,
preserving both geometric and semantic information. This approach revolutionizes the traditional
concept of sensor fusion, which previously relied on point-level fusion, and introduces a new

way of integrating information from different sensory sources.

BEVFusion tackles the fundamental challenge of reconciling the visualization discrep-
ancies between distinct sensor data, such as cameras and LiDAR, which operate in different
visualization modalities. Traditionally, previous methods resorted to projecting LiDAR point
clouds onto camera images for fusion (LIU ef al., 2022). However, this approach presents signifi-
cant limitations, as the projection from camera to LiDAR leads to semantic loss and geometric

distortions.

In contrast, BEVFusion adopts the innovative approach of transforming all relevant

features into the BEV space, which is conducive to nearly all perception tasks. This strategy
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preserves both the geometric structure of LiDAR features and the semantic density of camera
features. Additionally, BEVFusion effectively identifies and overcomes performance bottlenecks,
such as latency in transforming camera views to BEV, through BEV pooling optimization
techniques (LIU et al., 2022).

The transformation from camera to BEV is a critical step in the sensor fusion process for
3D perception (LIU et al., 2022). In the method proposed by BEVFusion, this transformation is
efficiently addressed through preprocessing techniques and interval reduction, thereby optimizing

the BEV feature aggregation operation.

Initially, during the preprocessing phase, each point in the camera feature point cloud is
associated with a BEV grid. This step is crucial to ensure that both the 3D coordinates and the
BEV grid index are pre-calculated for each point, enabling efficient reordering during inference
(LIU et al., 2022).

After the grid association, feature points that share the same BEV grid are sequentially
organized into tensors. Then, during the interval reduction step, features within each BEV grid
are aggregated using a symmetric function, such as mean, max, or sum. However, to overcome the
inefficiencies of previous approaches, a specialized Graphics Processing Unit (GPU) kernel was
developed to operate directly on the BEV grids, allowing for more efficient feature aggregation

and significantly reducing process latency (LIU et al., 2022).

These optimizations result in a camera-to-BEV transformation that is up to 40 times
faster, reducing latency from over 500ms to just 12ms, representing a minimal fraction of the
model’s total execution time. Furthermore, this approach is highly scalable across different
feature resolutions, which is crucial for the effective integration of multimodal sensory features
into the shared BEV representation (LIU et al., 2022).

After converting all sensory features into the shared BEV representation, BEVFusion
proposes a simplified fusion process using an element-wise operator, such as concatenation.
Although they reside in the same space, the LIDAR and camera BEV features may exhibit spatial
misalignments due to inaccuracies in depth determination by the vision transformer (LIU et al.,
2022). To address this issue, the method adopts a convolution-based BEV encoder, integrating
residual blocks to correct these local misalignments (LIU ef al., 2022). This strategy is essential
to ensure the accuracy and consistency in fusing features from different sensors, enabling a more
robust and cohesive representation of the information captured by the autonomous vehicle’s

perception system.

Experiments with BEVFusion, using the nuScenes dataset (CAESAR et al., 2020),
explored a wide variety of realistic driving scenarios and conditions. nuScenes offers a diverse
collection of data captured in different cities, covering urban and suburban environments as
well as various weather conditions and times of day. This allowed for the evaluation of the

robustness and generalization of the models in different driving contexts, including challenging
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situations such as heavy traffic, adverse weather conditions, and complex roadways. Additionally,
the detailed 3D annotations provided by nuScenes enable an accurate assessment of model
performance in tasks like object detection and segmentation. Thus, experiments with BEVFusion
provided valuable insights into the framework’s effectiveness and robustness across diverse

autonomous driving environments.

3.2 Attention Mechanisms in Multi-Sensor Fusion for 3D
Object Detection

BEVFusion has demonstrated remarkable results, significantly optimizing the time
required to generate BEV representations and achieving state-of-the-art performance on several

autonomous vehicle datasets for tasks such as 3D object detection and segmentation.

However, after acquiring the LiDAR and camera signals and converting them into feature
space representations, BEVFusion combines them through concatenation and then processes
them using a convolutional network. This approach presents an opportunity for refinement in the
way this information is integrated and processed. This study aims to evaluate attention methods

to enhance the fusion of LiDAR and camera signals in this context.

The concept of attention mechanisms has roots in various areas of computer science and
artificial intelligence, but its specific application in neural networks and deep learning gained
prominence primarily with the development of the Transformer, a machine learning model
introduced in the paper “Attention is All You Need" (VASWANI et al., 2017).

Although the concept of attention has been explored in different contexts before, such as
in language models, machine translation, and natural language processing, the Transformer was
one of the first deep learning architectures to demonstrate the power and effectiveness of attention
mechanisms across a wide range of tasks, including machine translation, text summarization,

and computer vision tasks.

Due to its status as a constantly developing field within the scope of Deep Learning,
there is a significant gap in the literature regarding studies dedicated to multi-sensor fusion using
attention mechanisms. Nevertheless, some relevant works have explored these resources both
in the context of perception for autonomous vehicles and in other application domains. This
section will review studies that have investigated attention mechanisms as a means to address

multi-sensor fusion in 3D detection contexts.

The Adaptive Fusion Transformer (AFTR), proposed in the paper “AFTR: A Robustness
Multi-Sensor Fusion Model for 3D Object Detection Based on Adaptive Fusion Transformer”
(ZHANG et al., 2023), introduces an end-to-end fusion framework that employs adaptive atten-
tion mechanisms to address the misalignment and feature diffusion issues commonly encountered

in multi-sensor fusion. The key components of AFTR include the Adaptive Spatial Cross Atten-
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tion (ASCA) mechanism and the Spatial Temporal Self-Attention (STSA) mechanism.

The Adaptive Spatial Cross Attention (ASCA) dynamically associates and interacts with
data features from multiple sensors in 3D space, mitigating misalignment issues and reducing
computational costs. By selectively interacting with relevant features using learned offsets,
Adaptive Spatial Cross Attention (ASCA) improves alignment accuracy without the need for
rigid projections. Additionally, Adaptive Spatial Cross Attention (ASCA) effectively integrates
temporal information to counter misalignments induced by dynamic scenes, ensuring precise

fusion across temporal frames.

The Spatial Temporal Self-Attention (STSA) further enhances alignment and robustness
by incorporating temporal information and dynamically updating offsets to align object features
across different timestamps. This mechanism enables the Adaptive Fusion Transformer (AFTR)
to achieve state-of-the-art performance in 3D object detection tasks, demonstrating superior

accuracy and robustness compared to existing fusion models.

In summary, the Adaptive Fusion Transformer (AFTR) represents a significant advance-
ment in the field of multi-sensor fusion for autonomous driving systems, offering a robust and
efficient solution to the challenges of data heterogeneity and dynamic scene perception. By
addressing misalignment and feature diffusion problems, the Adaptive Fusion Transformer
(AFTR) paves the way for more reliable and accurate autonomous driving systems in complex

real-world environments.

The paper “MSF3DDETR: Multi-Sensor Fusion 3D Detection Transformer for Au-
tonomous Driving" (ERABATI; ARAUJO, 2022) proposes a transformer architecture for the
fusion of image and LiDAR data, aiming to improve detection accuracy. The MSF3DDETR is
a single-stage, anchor-free, and post-processing-free model that takes multi-view images and

LiDAR point clouds as input and predicts 3D bounding boxes.

The method proposed by MSF3DDETR consists of three main components: (1) a convo-
lutional Backbone and Neck, (2) a Transformer Head, and (3) a Loss function. The convolutional
Backbone extracts features from multi-view images using a shared ResNet, while LiDAR fea-
tures are extracted using a base network such as SECOND or PointPillars. The novelty of
MSF3DDETR lies in the transformer head, which employs a cross-attention block to fuse RGB
and LiDAR features through an attention mechanism, leveraging learned object queries. These
object queries interact within a multi-head self-attention block to refine the queries and predict
3D bounding box parameters. During training, the model is optimized using bipartite matching

and set-to-set loss.

The paper “FUTR3D: A Unified Sensor Fusion Framework for 3D Detection" (CHEN
et al., 2023) proposes the first unified end-to-end sensor fusion framework for 3D detection,
called FUTR3D, which can be used in (almost) any sensor configuration. FUTR3D employs

a Query-Based Modality-Agnostic Feature Sampler along with a transformer decoder and a
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set-to-set loss for 3D detection, thus avoiding the use of late fusion heuristics and post-processing

tricks.

The approach proposed by FUTR3D can be conceptually divided into four main parts.
First, data from different sensor modalities are encoded by their modality-specific feature en-
coders. Then, a Query-Based Modality-Agnostic Feature Sampler (MAFS) is used to sample
and aggregate features from all modalities according to the initial positions of the queries; this is
the main innovative aspect of this work. Next, a shared transformer decoder head is employed to
refine the bounding box predictions based on the fused features using an iterative refine module.

Finally, the loss is based on set-to-set matching between predictions and ground-truths.

The MAFS operates in a modality-agnostic environment, meaning that it is designed to
be independent of the input data modality. The input to the MAFS consists of a set of object
queries, which are abstract representations of objects in a scene, and the features extracted from

all available sensors in the perception system, such as LiDAR, cameras, and radar.

For each query, the MAFS samples features from all sensors. This sampling process is
conducted adaptively, based on the location and orientation of the query in relation to the data
provided by each sensor. In essence, the MAFS selects the relevant features from each sensor

that are associated with the position and shape of the object represented by the query.

After sampling features from all sensors, the MAFS fuses these features into a unique
and integrated representation of the object. This fusion process is carried out in a way that
preserves the important information from each sensor while simultaneously leveraging the
complementarities between the sensor modalities. For example, depth information provided by
LiDAR can be combined with the visual features from cameras to improve the accuracy and

robustness of object detection in challenging environments.

The output of the MAFS is a rich multi-modal representation of each object in the scene,
encapsulating crucial information from all available sensors. This integrated representation is
then used by the rest of the FUTR3D detection pipeline, including the transformer decoder, to
make accurate and robust predictions about the location, orientation, and class of objects in the

scene.

The paper “Cross Modal Transformer: Towards Fast and Robust 3D Object Detection”
(YAN et al., 2023) presents the development of a robust 3D detector, called Cross Modal
Transformer (CMT), for end-to-end multi-modal 3D detection. The CMT aims to overcome
the challenges encountered in fusing information from different sensor modalities, such as
images and point clouds, for accurate 3D object detection. The proposed method addresses the
complexity of multi-modal integration without the need for explicit transformation of views,
adopting a cross-attention mechanism in a transformer decoder. This approach allows the model
to interact directly with image and point cloud tokens, producing precise 3D bounding box

outputs.
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The method proposed by CMT consists of three main components: a coordinate encoding
module, a position-guided query generator, and a decoder with loss calculation. The coordinate
encoding module is responsible for incorporating positional information into the multi-modal
features, enabling effective fusion between different sensor modalities. To achieve this, 3D
coordinates are implicitly encoded into the multi-modal tokens, avoiding the need for explicit
feature alignment between views. The position-guided query generator initializes the queries
with 3D reference points, which are then transformed into image and LiDAR spaces for relative
coordinate encoding. These queries are then used to interact with the multi-modal fokens in
the transformer decoder, generating class and 3D bounding box predictions. The decoder uses
multiple layers to update the representations of the multi-modal fokens and predict the desired
outputs. The loss is computed based on bipartite matching between the predictions and the
ground-truth labels, using a combination of focal loss for classification and L1 loss for 3D

bounding box regression.

Additionally, the CMT employs a training strategy called masked modal training to
enhance its robustness. This strategy involves training the model with only a single input
modality during certain iterations, ensuring that the model remains robust even in the absence of
certain sensors. Experiments show that CMT maintains robust performance, even in extreme

sensor failure scenarios, such as the absence of LiDAR data.

The paper “AutoAlign: Pixel-Instance Feature Aggregation for Multi-Modal 3D Object
Detection" (CHEN et al., 2022) proposes an adaptive and automated feature fusion strategy,
enabling the model to dynamically align heterogeneous features in a data-driven manner.

The method proposed by AutoAlign is divided into three main stages: First, the Cross-
Attention Feature Alignment (CAFA) module is introduced, allowing the adaptation of features
between heterogeneous representations. Instead of a deterministic matching, CAFA enables each
voxel to perceive the entire image and dynamically attend to 2D features at the pixel level based

on learnable alignment maps.

Next, the Self-supervised Cross-modal Feature Interaction (SCFI) module is introduced
to guide the learning of CAFA. This module utilizes the final predictions of the 3D detector
as proposals, leveraging both image and point cloud features for accurate proposal generation.
Moreover, the feature interaction between modalities at the instance level is enhanced through
a self-supervised learning approach, which applies a similarity loss between paired 2D and
3D features to guide feature alignment. Finally, a joint training strategy for 2D-3D detection
is proposed to regularize the features extracted from the image branch and improve detection

accuracy.

The paper “Deeplnteraction: 3D Object Detection via Modality Interaction” (YANG et
al., 2022), unlike conventional strategies that fuse information from different modalities into
a single feature map, the DeeplInteraction method maintains modality-specific representations

throughout the object detection process. This allows for interaction between modalities for
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progressive information exchange and representation learning, using attention mechanisms to

highlight relevant areas in both modalities.

Deeplnteraction operates in two main stages: the encoder and the decoder. In the encoder,
modality-specific representations (image and LiDAR) are learned independently. Instead of
fusing these representations into a single feature map, the method keeps them separate to allow
interaction between them. This is done by calculating the similarity between elements from both
representations and adjusting their weights accordingly. In this way, the most relevant parts of
one modality influence the representation of the other modality, and vice versa. This modality
interaction process enables progressive information exchange, leading to a richer and more

comprehensive representation of the data.

In the decoder, attention is used to improve 3D object predictions by highlighting
important areas of the enhanced image or LiDAR representations. This allows the model to focus
on relevant features for object detection, such as edges, textures, or specific patterns, thereby

improving prediction accuracy.

An important aspect of the method is its ability to handle the complexities and nuances
of three-dimensional data, such as the presence of multiple sensory modalities and the need to

capture spatial and semantic relationships between objects.

The paper “LIFT: Learning 4D LiDAR Image Fusion Transformer for 3D Object Detec-
tion" (ZENG et al., 2022) addresses a significant challenge in 3D object detection for autonomous
driving environments: the efficient fusion of sensor information over time. LiDAR and camera
sensors are common in this context, offering complementary information, but fully exploiting
these sequential data remains challenging. The paper proposes the LiIDAR Image Fusion Trans-
former (LIFT) to model the mutual interaction between data from different sensors over time.
LIFT learns to align sequential data from multiple modalities to achieve multimodal multi-frame
information aggregation. Furthermore, it benefits from a data augmentation scheme between

sensors and over time.

The proposed method consists of two main components: the Grid Feature Encoder and
the 4D Sensor-Temporal Attention. The Grid Feature Encoder processes sequential data from
different sensors into grid features. This is achieved by extracting pillar features to project
LiDAR points and image features into BEV maps, and then applying point-wise attention to
enhance feature representation. On the other hand, the 4D Sensor-Temporal Attention models the
mutual correlations of sequential LIDAR and image data using the Transformer’s Self-Attention
mechanism. This component uses 4D positional encoding to locate the tokens across sensors and

time, and adopts a pyramidal context structure to expand the receptive field.

Attention plays a crucial role in the proposed method. In the Grid Feature Encoder,
point-wise attention is used to enhance the representation of features within each pillar, allowing

for dynamic aggregation of information between LiDAR and image modalities. In the 4D Sensor-



60 Chapter 3. Related Work

Temporal Attention, the attention mechanism is applied to model the mutual correlations between
sequential LiDAR and image data over time, allowing the model to focus on the most relevant

relationships for 3D object detection.

The paper “SparseFusion: Fusing Multi-Modal Sparse Representations for Multi-Sensor
3D Object Detection" (XIE et al., 2023) addresses the following problem: existing 3D object
detection methods often use dense representations of scenes, which can be inefficient and noisy,
as objects occupy only a small portion of the 3D space. Therefore, the paper proposes the
exclusive use of sparse candidates and representations to achieve more efficient and accurate

detection.

The proposed method, called SparseFusion, operates in several stages. First, sparse
candidates from each modality (LiDAR and camera) are acquired through modality-specific
object detection. Then, the instance-level features generated by the camera branch are transformed
into the LiDAR space of the instance-level features generated by the LiDAR branch. This is done
using a simple, dedicated attention module. To mitigate negative transfer between modalities,
geometric and semantic information transfer modules are applied before the parallel detection
branches. Additionally, custom loss functions are designed for each module to ensure stable

optimization.

In the sparse representation fusion method, the candidates from both modalities are
concatenated, and then a self-attention layer is used to efficiently fuse the information from the
two modalities. The authors argue that, although simple, the use of self-attention is innovative
as it allows modality-specific detectors to encode the advantageous aspects of their respective
inputs, while the self-attention module is capable of aggregating and preserving information

from both modalities.

Furthermore, the paper proposes information transfer modules between modalities to
mitigate negative transfer. The geometric transfer module projects LiDAR points onto depth
maps from multiple views and uses them to generate depth-aware features for camera inputs. On
the other hand, the semantic transfer module projects LiDAR points onto images, combining the

resulting features with the features from the BEV representation.

The paper “Spatial Attention Frustum: A 3D Object Detection Method Focusing on
Occluded Objects" (WANG et al., 2020) proposes the method called Spatial Attention Frustum
(SAF), which aims to suppress irrelevant features and allocate limited computational resources to
critical parts of the scene, providing greater relevance and facilitating processing for higher-level

perceptual reasoning tasks.

SAF is designed to handle occluded objects, which usually have only part of their
structure visible. To ensure the effectiveness of the method even in the presence of occluded
objects with partial structures, the paper introduces a Local Feature Aggregation (LFA) module

to capture more complex local features from the point cloud.
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SAF uses a segmentation method based on monocular depth estimation and is guided by
the object height, as spatial attention is directly related to the distance estimate of the objects.
Additionally, the paper proposes a joint projection loss function between 2D and 3D bounding
boxes to improve the overall accuracy of the method. To extract and process features, the method
uses a fully convolutional network and an LFA module, which increases the receptive field of

each point.

The fusion between LiDAR and camera is performed adaptively, allowing the model to
determine which image information is relevant for object detection. To achieve this, a spatially
modulated attention mechanism is used, where each object query acts only on the relevant regions
of the image, improving the efficiency and robustness of the fusion process. Additionally, an
image-guided query initialization strategy is introduced, which selects object queries based on
both LiDAR and image features, increasing the model’s ability to detect objects that are difficult

to identify using just the point cloud.

The Transformer attention mechanism allows the model to adaptively determine where
and what information should be extracted from the image, resulting in a robust and effective
fusion strategy. Furthermore, an image-guided query initialization strategy is designed to handle

objects that are difficult to detect in point clouds.

The paper “UniBEV: Multi-modal 3D Object Detection with Uniform BEV Encoders for
Robustness against Missing Sensor Modalities" (WANG et al., 2023) aims to create well-aligned
BEV feature maps from each available sensor modality. In contrast to previous BEV-based
multi-modal detection methods, where each sensor modality follows a non-uniform approach to
re-sample features from the sensor’s native coordinate systems to BEV features, UniBEV uses a
uniform approach. This is achieved through a uniform deformable BEV encoder for all sensor

modalities, facilitating alignment between the modalities.

UniBEV uses a set of learnable BEV query vectors with associated 3D spatial locations,
shared across all modalities, to construct BEV features. These queries are designed for the
native spatial coordinates of each sensor modality and are used to encode BEV features through
deformable attention layers. Additionally, the method proposes a fusion module that uses channel-
normalized weights to combine the BEV feature maps from different sensor modalities, ensuring
that the number of channels in the fused features remains consistent, even when one modality is

absent.

For object detection, UniBEV employs a common modality dropout training strategy,
where during training, the BEV features of a randomly selected modality are discarded with a

certain probability, thus simulating the absence of a sensor modality.

The paper “Unifying Voxel-based Representation with Transformer for 3D Object Detec-
tion" (LI et al., 2022) presents a new unified framework for 3D object detection from multimodal

data, called UVTR. The main goal of this method is to unify multimodal representations in the
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voxel space for accurate and robust 3D detection, both in single-modality and multi-modality

scenarios.

To achieve this goal, UVTR introduces a modality-specific space, designed to represent
different inputs in the voxel feature space. It then proposes modality-cross interactions, including
knowledge transfer and modality fusion, to fully utilize inputs from different sensors. UVTR
adopts a Transformer-based decoder to efficiently sample features from the unified space with

learned positions, facilitating object-level interactions.

The modality-specific space is constructed differently for images and point clouds. In
the case of images, the voxel space is constructed by sampling features from the image plane
according to predicted depth scores and geometric constraints. For point clouds, the voxels are

naturally generated from the precise position of the points.

A voxel encoder is then introduced for spatial interaction, establishing relationships
between adjacent features in each voxel space. Afterward, modality-cross interaction is performed
by transferring knowledge between modalities to optimize the model’s features, guided by a
modality rich in information toward a modality with less information. Furthermore, modality
fusion is designed to better utilize all modalities both during training and inference, combining

features from different modalities in a unified voxel space.

Finally, the Transformer-based decoder is employed for object-level interaction and final
prediction. Inspired by the Deformable DETR, it uses reference positions to sample representative
features, regardless of the spatial size of the 3D voxel spaces. Each object query interacts with
the unified voxel features in each block of the decoder, allowing the model to make accurate and

robust predictions.

3.3 Attention Mechanisms in Multi-Sensor Fusion for Seg-

mentation

Although segmentation is a critical task for autonomous vehicles, few studies have
explored sensor fusion or multimodal fusion with attention mechanism specifically for this
purpose. This is primarily because segmentation tasks tend to focus heavily on vision, often
neglecting the integration of other sensor modalities. Multimodal fusion has been applied in
some cases, where data from different modalities, such as images, are combined to enhance
segmentation performance. However, significant research in this area remains scarce, especially
in applications related to autonomous vehicles. The following paragraphs will discuss the existing
studies that leverage attention mechanisms to perform sensor fusion or multimodal fusion for

segmentation tasks.

In the work by Zhang et al. (2025) proposes a two-stage attention-guided framework to
enhance semantic segmentation through multimodal fusion. The method focuses on integrating
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features from various modalities, such as RGB images and auxiliary data (e.g., depth, LIDAR),

by leveraging attention mechanisms to refine and guide feature fusion at multiple levels.

The proposed framework consists of two primary components: a feature guidance module
and a feature interaction module. These components employ cross-attention mechanisms to
prioritize relevant features and reduce noise, dynamically capturing inter-modal relationships.
Additionally, a lightweight decoding process ensures efficient representation learning for each
modality without significantly increasing computational costs. The two-stage design combines
early fusion of raw features and deep feature interaction, achieving a comprehensive integration

of multimodal information.

In the work by Zhuang ef al. (2021), a Perception-aware Multi-Sensor Fusion (PMF)
scheme is proposed to enhance 3D LiDAR semantic segmentation by effectively integrating data
from RGB images and LiDAR point clouds. The approach focuses on leveraging perceptual
information from these two complementary modalities—appearance details from RGB images

and spatio-depth characteristics from point clouds.

The PMF framework consists of three main components: (1) a perspective projection
method to map sparse point clouds into the RGB image coordinate space, preserving image
appearance information; (2) a two-stream network (TSNet) that separately processes RGB
and LiDAR inputs, and incorporates residual-based fusion modules to combine their features
effectively; and (3) perception-aware losses, which encourage the model to balance and leverage
the perceptual strengths of both modalities. These losses measure perceptual differences between
the modalities and supervise the network’s learning by focusing on confident predictions from

either stream.

A notable feature of this approach is its residual-based fusion mechanism, which dynam-
ically combines image features into the LiDAR stream while retaining the structural information
from the point clouds. The attention mechanism embedded within this module ensures that
relevant information from both modalities is emphasized during the fusion process. This design
allows PMF to handle challenges such as sparse LiDAR data and unreliable RGB inputs under

adverse conditions.

The Efficient Perception-Aware Multi-Sensor Fusion (EPMF) method proposed by Tan
et al. (2024) builds upon its predecessor, PMF, to address limitations in computational efficiency
and scalability while maintaining robust performance in 3D semantic segmentation tasks. Both
approaches utilize perception-aware multi-sensor fusion to integrate appearance information
from RGB images and spatio-depth data from LiDAR point clouds. However, EPMF introduces
significant advancements in data pre-processing and network architecture to optimize the fusion

process.

EPMF employs a novel cross-modal alignment and cropping technique to mitigate the

misalignment issues between RGB images and LiDAR point clouds. This process reduces unnec-
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essary computational overhead by aligning and cropping input data to only include overlapping
regions, resulting in more compact and efficient inputs. Additionally, EPMF enhances the contex-
tual module within the LiDAR stream by incorporating down-sampling operations and replacing
standard convolutional layers with sparse invariant convolutional layers, tailored for the sparse

nature of point cloud data.

Another notable improvement is the fusion strategy. Unlike PMF, which focuses on a
residual-based fusion within the LIDAR domain, EPMF introduces a mechanism to integrate high-
level LiDAR features directly into the camera stream. This adjustment boosts the performance of
the camera stream without adding extra computational costs, enhancing the overall effectiveness

of the perception-aware loss.

In the work by Fooladgar and Kasaei (2019), the Multi-Modal Attention Fusion Net-
work (MMAF-Net) is introduced as a novel architecture for the semantic segmentation of RGB
and depth data. The model aims to effectively integrate multi-modal inputs through an innova-
tive attention-based fusion mechanism, enhancing segmentation accuracy while maintaining

computational efficiency.

MMAF-Net employs an encoder-decoder structure with two dedicated encoders for RGB
and depth data, generating intermediate feature maps for each modality. These features are
combined in the decoder through a series of Attention-Based Fusion Blocks. The Attention-
Based Fusion Blocks utilize two types of attention mechanisms: channel-wise attention, which
emphasizes the most relevant channels, and spatial-wise attention, which highlights significant
spatial regions within the feature maps. By combining these two approaches, the fusion process
identifies and amplifies critical information, suppressing irrelevant features and improving

segmentation performance.

The model is computationally efficient, employing long-range residual connections to
recover information lost during the downsampling process. This design reduces the number of
parameters and computational complexity, enabling MMAF-Net to achieve competitive results
on benchmarks such as SUN-RGBD, NYU-V2, and Stanford-2D-3D-Semantic datasets. The
attention mechanisms in MMAF-Net allow it to dynamically adapt to the complementary nature
of RGB and depth data, making it particularly effective for tasks involving complex scenes and

varied lighting conditions.

In the work by Xu, Lu and Wang (2021), the Attention Fusion Network (AFNet) for
Semantic Segmentation of RGB-IR Images is proposed as an innovative approach for multi-
spectral semantic segmentation. The model leverages a co-attention mechanism to fuse features
from RGB and IR images, addressing the limitations of traditional fusion methods, such as
simple summation or concatenation, which often fail to exploit contextual relationships and the

complementary characteristics of multi-spectral data.

The proposed network employs an encoder-decoder structure. Two separate encoders,
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based on modified ResNet architectures with dilated convolutions, extract feature maps from
RGB and IR images. These encoders maintain high-resolution feature maps and capture detailed
spatial information by removing downsampling in the last two blocks, which is crucial for

accurately segmenting small objects.

The core innovation lies in the Attention Fusion Module, which implements a co-attention
mechanism to guide the fusion of RGB and IR features. This module creates a symmetric
structure where RGB features influence the fusion of IR features and vice versa. Using cosine
similarity, attention matrices are generated to capture the spatial correlations between the two
modalities. These matrices dynamically weight the feature maps, emphasizing relevant areas
while suppressing irrelevant information. The attention-enhanced feature maps are then added
back to the original feature arrays to complete the fusion process. This mechanism ensures a
more effective integration of multi-spectral data, leveraging the complementary strengths of
RGB and IR inputs.

The decoder restores the spatial resolution of the fused features using bilinear interpola-
tion and convolutional layers, avoiding artifacts commonly introduced by deconvolution layers.

This design results in outputs with high visual fidelity and accurate pixel-level classification.

AFNet demonstrates superior performance in semantic segmentation tasks involving
RGB-IR data by enhancing the contextual representation and fully exploiting the complementary
nature of the two modalities. The experimental results highlight its effectiveness in improving
classification accuracy and localization, particularly in challenging environments such as low-

light conditions.

3.4 Final considerations

The analysis of related work highlights the increasing relevance of attention mechanisms
in multi-sensor fusion for 3D object detection and segmentation. Several studies have explored
spatial and channel attention to improve feature extraction and sensor fusion. For instance, the
SAF method employs spatial attention to focus on occluded objects, enhancing the detection of
partially visible structures. Similarly, UniBEV integrates deformable attention layers to align
BEYV features across different sensor modalities, ensuring robustness in multi-sensor fusion.
These methods share common objectives with this thesis, as they aim to refine sensor fusion
techniques to improve detection accuracy while addressing the challenges of occlusion and

sensor misalignment.

For segmentation tasks, fewer studies have specifically explored attention mechanisms
for multi-sensor fusion. Most segmentation approaches still focus predominantly on vision-
based methods, often neglecting sensor fusion techniques. However, some relevant works have
examined how attention mechanisms can refine feature selection in multimodal segmentation.

For example, PMF has leveraged attention to optimize the integration of RGB and LiDAR data,
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balancing the strengths of each modality.

The reviewed studies reinforce the potential of attention-based methods for multi-sensor
fusion and highlight their applicability to BEV representations. While existing works have
successfully improved object detection and segmentation, they often require high computational
resources. This thesis builds upon these advancements by integrating attention mechanisms into
BEVFusion, focusing on optimizing both performance and computational efficiency, which is

critical for real-world deployment in autonomous vehicles.
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CHAPTER

CONDUCTED RESEARCH

This chapter outlines the details of the present research work. First, the dataset used
for conducting experiments and evaluations is discussed. Next, the implementations and mod-
ifications made to the original BEVFusion code are described, aiming to integrate attention
mechanisms to enhance 3D perception. Additionally, the software and hardware resources

utilized in this investigation are presented.

4.1 Modifications to BEVFusion

The implementation of the BEVFusion method (LIU et al., 2022) is publicly available as
open-source code, enabling other researchers to reproduce experiments and make modifications
as needed. The original authors provided scripts that allow the model to be trained using only
camera data, only LiDAR data, or a combination of both, for both detection and segmentation
tasks. Additionally, pretrained weights are available for individual sensors for detection and
segmentation, as well as for the combined sensor model, which uses these individual pre-trained
models as starting points. These resources facilitate experimentation and provide deeper insights
into the BEVFusion method.

However, the original model was trained using eight Nvidia A100 GPUs, each with 80
GB of Video Random Access Memory (VRAM), which allowed for a larger batch size during
training. In contrast, the available resources in the lab consisted of a single RTX 4090 GPU
with 24 GB of VRAM. This required modifications to the original code to use a significantly
smaller batch size and reduce the learning rate during training. As a result, these adjustments led

to results that differed from those reported by the original authors.

The requirement for a GPU with 24 GB of VRAM for training the original BEVFusion
model arises primarily from the use of the Swin Transformer (LIU et al., 2021) backbones

and the voxel size employed for processing LiDAR data. This thesis proposes adapting the
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BEVFusion model by replacing the backbones and adjusting the voxel size to enable training and
inference on GPUs with 12 GB of VRAM, a more modest and commonly available configuration
in mid-range GPUs. Among the alternatives to the Swin Transformer are ResNet (HE et al.,
2015) and MobileNet (HOWARD et al., 2017) architectures. The goal of these modifications is to
reduce computational complexity and memory requirements without significantly compromising

model performance.

In the original BEVFusion implementation, pretrained models for each sensor modality
were utilized as backbones. Following this strategy, the ResNet50 architecture was selected as
the image backbone because a pretrained model on the dataset used in BEVFusion experiments
is publicly available. The LiDAR backbone remains unchanged, continuing to utilize VoxelNet.
This adjustment significantly reduced memory consumption, allowing the model to be trained
with a batch size of 2. Additionally, the training duration was reduced from 20 to 7 days for

segmentation tasks and from 7 to 2 days for 3D object detection.

These training times were obtained using BEVFusion’s default training configuration,
which estimates 20 epochs for training a segmentation model and 6 epochs for training a 3D
object detection model. It is important to note that training parameters such as the number of
epochs, learning rate, and scheduling can be adjusted to improve performance, as done by the
original BEVFusion authors. However, optimizing these hyperparameters requires extensive
experimentation to determine the best configuration, which is beyond the scope of this work.
Therefore, the same configuration provided in BEVFusion’s official repository was used, with
only minimal modifications suggested by the original authors to ensure compatibility with the
hardware used in this study.

The original BEVFusion implementation processes each sensor modality through a
specific backbone to extract features. These features are subsequently concatenated and processed
by a convolutional layer. In this thesis, we propose a modification to this stage of BEVFusion
processing. After extracting features from the sensors, the feature vectors are concatenated and
passed through an attention mechanism module. This module identifies the most relevant parts
of the unified features, generating an importance map that is multiplied by the original features

before being processed by the convolutional layer.

During the training phase, dropout regularization is applied to the concatenated features,
randomly zeroing out a portion of them with a certain probability. This strategy aims to reduce
the model’s susceptibility to overfitting. An additional potential benefit of applying dropout is
improved robustness to sensor failures or less favourable sensor conditions. In this work, the
probability of an input element being zeroed out by dropout was set to 0.25. However, it is
important to note that this is a hyperparameter that can be tuned to optimize performance. Due

to hardware limitations, a fixed value was used across all experiments.

Figure 10a illustrates the fusion process in the original BEVFusion implementation,

where features extracted by each sensor’s backbone are concatenated and directly processed by a
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convolutional layer. In contrast, Figure 10b shows the proposed modification, where an attention
mechanism is introduced to identify the most relevant parts of the unified features. This generates
an importance map that is multiplied with the original features before being processed by the
convolutional layer. This modification is designed to enhance the fusion process by focusing on

key features, thereby improving model robustness and performance.
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(b) BEVFusion with attention and dropout
(a) Original BEVFusion fusion implementation. mechanism.

Figure 10 — Figure 10a illustrates the original BEVFusion fusion implementation, while Figure 10b shows
the modified BEVFusion with the addition of attention and dropout mechanisms.

Figure 11 highlights the components of the original BEVFusion processing pipeline that
were modified in this thesis. The image backbone, marked in blue, was replaced with ResNet50,
a residual network with simpler convolutional layers, as an alternative to the Swin Transformer.
While the Swin Transformer is a powerful backbone, it is computationally expensive. The sensor
fusion process, marked in red, was enhanced by introducing dropout regularization and an
attention mechanism, as described in the previous paragraph. The rest of the BEVFusion model
remains unchanged and is implemented as provided in the official project repository by the

original authors.

The attention mechanisms employed in this study for feature fusion include Spatial
Squeeze and Channel Excitation, Channel Squeeze and Spatial Excitation, Concurrent Spatial and
Channel Squeeze-and-Excitation, Channel Attention, Spatial Attention, and the Convolutional

Attention Block Module (CBAM). These attention modules, along with their implementations,
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Figure 11 — Modifications to the BEVFusion pipeline. The image backbone (blue) was replaced with
ResNet50, and dropout and an attention mechanism (red) were added to the sensor fusion
process. Other components remain unchanged.

are detailed in the following subsections.

4.1.1 Spatial Squeeze and Channel Excitation

The Spatial Squeeze and Channel Excitation (cSE) mechanism, introduced in (HU et
al., 2019) as Squeeze and Excitation (SE) blocks, is a channel attention method designed to
improve the representational power of CNN. Unlike traditional convolutional layers that process
spatial and channel information together, SE blocks explicitly model interdependencies between
channels, enabling dynamic recalibration of channel-wise feature responses. This recalibration
enhances the network’s ability to emphasize informative features while suppressing less useful

ones.
An SE block operates in two main stages: Squeeze and Excitation.

In the Squeeze stage, global spatial information is aggregated using global average
pooling. For an input feature map U € RE*#*W 'where C, H, and W represent the number of

channels, height, and width, respectively, the channel descriptor z € R is computed as:

1
HxW

w
Y X UGi),

i=1 j=1

ZC =

where z. represents the aggregated information for the c-th channel.

In the Excitation stage, a gating mechanism generates channel-specific weights. This
involves passing z. through two fully connected layers with a ReL.U activation and a sigmoid
function:

ScSE(U) = G(Wz . ReLU(W1 'Zc)),

where W) € R%*C and W, € RC*F are the weights of the two fully connected layers, r is the

reduction ratio, and ¢ represents the sigmoid activation.
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RCXHXW

The output feature map U, € is obtained by rescaling the input feature map U

using the generated channel weights s sg:

UC = SCSE(U) : Ua

SE blocks can be seamlessly integrated into existing CNNs architectures, such as ResNet
and Inception, as demonstrated by Hu ez al. (2019). By replacing or augmenting standard layers
with SE blocks, significant performance gains have been achieved across a variety of tasks,
including image classification, object detection, and segmentation, with minimal additional
computational cost. Notably, SE-ResNet-50 surpassed the original ResNet-50 by achieving a
lower top-5 error on the ImageNet dataset, demonstrating the effectiveness of the recalibration
strategy. These improvements underline the potential of channel attention mechanisms like SE

blocks to enhance the feature modelling capabilities of CNNSs.

4.1.2 Channel Squeeze and Spatial Excitation

The Channel Squeeze and Spatial Excitation (sSE) mechanism, introduced by Roy,
Navab and Wachinger (2018), focuses on recalibrating feature maps along the spatial dimension.
Unlike the traditional channel-wise approach, sSE emphasizes the relative importance of spatial

locations, which is particularly effective for fine-grained image segmentation tasks.

For an input feature map U € RH*WXC where H, W, and C represent the height, width,
and number of channels, respectively, the sSE block first performs a channel squeeze. This is

achieved by applying a 1x1 convolution:
SsSE(U) =4q= qu U,

where Wy, € RIXIXCx1 iq the weight of the convolution operation, and ¢ € R”*W is the resulting
projection tensor. Each element ¢; ; in g represents a linearly combined representation of all

channels at the spatial location (i, j).

Next, a sigmoid activation o rescales the activations to the range [0, 1]. The recalibrated

feature map U, is obtained by multiplying the spatial weights with the input tensor:

0} = G(SSSE(U) U

4.1.3 Concurrent Spatial and Channel Squeeze and Excitation

The Concurrent Spatial and Channel Squeeze and Excitation (csSE) mechanism com-
bines the benefits of both channel-wise (cSE) and spatial (sSE) recalibration. This approach,
also introduced by Roy, Navab and Wachinger (2018), applies both recalibration mechanisms

concurrently and combines their outputs through an element-wise addition.
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Given an input feature map U € R”>*W*C the recalibrated outputs of the cSE and sSE

blocks are computed as:

Uese = sese(U) U, Ussp = syse(U) - U.

The final recalibrated feature map Uy.sg, is obtained by combining these outputs:
USCSE = UCSE + USSE'

In this approach, a specific spatial location (i, j) and channel ¢ are emphasized only if
both recalibration mechanisms assign high importance to them. This concurrent recalibration
enhances the feature map’s relevance for tasks like image segmentation, encouraging the network

to learn more meaningful spatial and channel-wise representations.

4.1.4 Channel Attention

The Channel Attention (CA) mechanism stands out by focusing on specific features
within each channel of a feature representation. This technique becomes crucial in identify-
ing important semantic attributes, significantly improving the effectiveness and efficiency of

convolutional models.

In the work by Chen et al. (2017), an innovative architecture is proposed that integrates
spatial attention, channel-wise attention, and multi-layer attention in convolutional networks for
image captioning. The Channel Attention mechanism is applied to select semantic attributes in
response to a sentence context, emphasizing relevant features for prediction. Two approaches,
Channel-Spatial and Spatial-Channel, incorporate Channel Attention and Spatial Attention in

different orders.

In the work by Zhu et al. (2022), the Channel Interaction Unit is introduced in a model
for detecting lung nodules. The CIU uses channel-wise attention to capture local interactions
between different channels, enhancing nodule detection and optimizing information, highlighting

the effectiveness of Channel Attention in specific tasks.

The work of Woo et al. (2018) presents an innovative attention module that focuses on
the primary channel and spatial dimensions. Using a channel-wise attention approach, CBAM
highlights relevant features in each channel, significantly improving feature representation. With
sequential attention modules for both channels and spatial dimensions, the model enhances its

ability to learn “what" and “where" to focus.

In the work of Yan ef al. (2021), the Channel-wise Attention-based Depth Network
(CADepth-Net) is proposed for monocular depth estimation. By integrating channel-wise at-
tention modules, CADepth-Net performs information aggregation and feature recalibration,
emphasizing important details at different scales and reinforcing the applicability of channel-

wise attention in various tasks.
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In this study, a method analogous to the Channel Attention module proposed by Woo
et al. (2018) is adopted. Channel Attention enhances feature representations by focusing on
“what" is important within a feature map. This mechanism relies on pooling operations to distill
spatial context into channel-wise descriptors, which are then used to compute attention weights
dynamically. The primary steps include mean and max-pooling operations, followed by a shared

Multi-Layer Perceptron (MLP) with ReLU activation, and normalization via a sigmoid function.

The spatial context descriptors are calculated as:

i=1j=1 hJ

where U represents the input feature map of dimensions REHXW “and Zavg and Zyqy are channel-

wise descriptors obtained via average and max-pooling, respectively.

These descriptors are fed into a shared MLP to compute intermediate activations, which

are then combined:
SCA(U) = G(Wz . ReLU(Wl . Zavg)) + O'(W2 . ReLU(W1 'Zmax)),

where W and W, are learnable parameters of the MLP, and ¢ represents the sigmoid activation

function.

Finally, the attention weights sc4 are applied to the original feature map U via element-

wise multiplication, yielding the refined feature map:

A

U:SCA(U)~U.

This process enables the model to emphasize relevant features while suppressing less
critical ones, improving overall representational efficiency. Similar principles are utilized in the
Spatial Attention mechanism, which instead focuses on “where" the significant information lies,
emphasizing critical spatial regions to complement the channel-based focus. Both approaches
work synergistically to refine feature importance across tasks like object detection and semantic

segmentation.

4.1.5 Spatial Attention

Spatial Attention (SA) plays a crucial role in CNN, allowing the model to focus on
specific regions of an image by assigning differentiated weights to relevant features. This
mechanism is particularly valuable in tasks where the location of features is of great importance,

such as object detection and semantic segmentation.

A prominent approach to incorporating spatial attention in CNN is through the convolu-

tional block attention module, introduced by Woo et al. (2018). in their study on the subject. The
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CBAM was designed to easily integrate into existing convolutional neural network architectures,

offering a dedicated part for spatial attention.

In CBAM, spatial attention is computed based on the relationship between spatial features.
Unlike channel attention, which focuses on “what" is informative, spatial attention focuses on
“where" the relevant information is located, complementing channel attention. This approach is
described in detail in the work of Woo et al. (2018).

To compute spatial attention, CBAM uses pooling operations, both average and max
pooling, along the channel axis to generate efficient feature descriptors. These descriptors are
then convolved to produce a spatial attention map that highlights the important regions of the

image, improving the model’s focus on spatially significant areas.
The spatial context descriptors are calculated as:

1 C
Zavg = U(C), Zmax — maxU(c),
C ¢
c=1
where U € RE*H*W s the input feature map, and Zavg and Zpqy are spatial descriptors obtained

via average and max pooling across the channel axis.

The pooled descriptors are concatenated along the channel dimension and passed through

a convolutional layer to compute the spatial attention map:

SSA(U) = G(f7X7([Zavg§Zmax]))a

where f7*7 represents a convolution operation with a 7 x 7 kernel, and & is the sigmoid function

that scales the attention values between O and 1.

The spatial attention map sg4 is then applied to the input feature map U via element-wise

multiplication to generate the refined feature map:

A

U:SSA(U)-U.

This integration of spatial attention into CNN enables the model to focus on relevant
regions of the image, enhancing its ability to capture fine-grained spatial details and improving

performance across various computer vision tasks.

4.1.6 CBAM

The CBAM, introduced in the work by Woo et al. (2018), is a lightweight and efficient at-
tention mechanism designed to refine feature representations in CNNs. CBAM applies sequential
attention along two dimensions: channel and spatial. By learning “what" features are important
through channel attention and “where" to focus using spatial attention, CBAM enhances feature

refinement in an end-to-end trainable manner.
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CBAM first computes a channel attention map, sc4 € RE*!*!1_ for an input feature map
U € ROH*W Spatial information is aggregated using average pooling and max pooling to
generate descriptors. The refined feature map U, is then obtained by applying the channel
attention map. Next, the spatial attention is computed using the refined feature map, resulting in

U,, which highlights more relevant information and leads to a more refined feature map.

Uc/ = G(SCA(U))-U.

UC = O'(SSA(UC,)) . UC/.

As shown in Figure 12, the CBAM module integrates seamlessly into CNNs with
negligible computational overhead. Extensive experiments in (WOO et al., 2018) demonstrate

its effectiveness across tasks such as image classification, object detection, and segmentation.

( Convolutional Block Attention Module \
Channel [
Input Feature Attention Spatial Refined Feature
Module Attention

j 5 Module
Figure 12 — Diagram of the CBAM module, showing sequential application of channel and spatial atten-
tion. Adapted from (WOO et al., 2018).

Channel and Spatial Attention mechanisms have distinct yet complementary roles in
feature recalibration. Channel Attention enhances feature maps by weighting each channel
according to its relevance, effectively emphasizing the “what” aspect of the data. In contrast,
Spatial Attention focuses on the “where” by highlighting important regions in the feature map.
Combining these two approaches enables the model to dynamically capture both channel-specific
and spatially distributed information, thereby improving performance in 3D object detection and

semantic segmentation with minimal additional computational overhead.

Attention mechanisms based on channel and spatial dimensions also offer the benefit
of lower computational complexity compared to transformer-based approaches. Transformer
models, which rely on self-attention, resulting in significantly higher memory and processing
requirements. Despite this, many recent studies are pursuing transformer-based attention for
multi-sensor fusion to leverage their capability to capture long-range dependencies and complex
feature interactions. However, the increased computational cost makes them less practical for

real-time applications or deployments on resource-constrained hardware.
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4.2 nuScenes Dataset

The advancement of autonomous vehicle technology has driven the demand for robust
and diverse datasets to train and evaluate perception and control algorithms. In this context, the
nuScenes Dataset(CAESAR et al., 2020) emerges as a significant contribution to the autonomous
vehicle research community. Developed by nuTonomy, a subsidiary of Aptiv, the nuScenes
Dataset provides a wide range of sensory data and contextual information collected in real-world

urban environments.

The nuScenes Dataset consists of a comprehensive collection of data captured by various
sensors, including cameras, LIDAR, RADAR, GPS, and IMU, mounted on data collection
vehicles, as shown in Figure 13. These sensors offer detailed information about the surrounding
environment, including high-resolution images, three-dimensional point clouds, and data on

location and orientation.

Figure 13 — Sensor configuration used to generate the nuScenes Dataset (CAESAR et al., 2020).

RADAR
Front Left

—> X-axis
) Downward —> Y-axis
® Upward —> Z-axis

For the nuScenes dataset, approximately 15 hours of driving data were collected in
Boston and Singapore by third-party entities. The complete dataset includes information from
the Seaport district and One North in Boston, as well as Queenstown and Holland Village in
Singapore. The driving routes were carefully selected by the data collectors to capture challenging
scenarios, ensuring diversity in locations, times of day, and weather conditions. To achieve a
balanced class distribution, additional scenes featuring rare classes, such as bicycles, were
included. Based on these criteria, 1,000 scenes, each lasting 20 seconds, were manually selected.

An example of some images from the dataset can be seen in Figure 14.

The nuScenes Dataset is accompanied by a comprehensive set of annotations, providing
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Figure 14 — Example of adverse conditions in the nuScenes dataset (CAESAR et al., 2020).

detailed information about objects in the environment, such as cars, pedestrians, bicycles, and
traffic signs. These annotations are crucial for object detection, tracking, and prediction tasks,
allowing perception algorithms to understand and interact with the surrounding environment in a

precise and effective manner.

The applications of the nuScenes Dataset are vast and span a variety of fields, including
academic research, autonomous vehicle technology development, simulation, and artificial
intelligence algorithm training. Researchers and engineers can use the nuScenes Dataset to
develop and test perception algorithms, trajectory planning, and autonomous vehicle control in a

safe, controlled environment before deploying them in real-world scenarios.

nuScenes provides its own metric for detection tasks, known as the nuScenes Dataset
Score (NDS), which was developed to address the limitations of conventional object detection
metrics, such as mAP with an IoU threshold. These metrics fail to capture all aspects of nuScenes
detection tasks, such as speed estimation and attributes, as well as the coupling of location, size,
and orientation estimates. To overcome these limitations, the NDS metric proposes consolidating

different types of errors into a single scalar score.

The formula for calculating the NDS is given by:

NDS = % 5-mAP+ Y (1—min(1,mTP))
mTPETP
where mAP is the Mean Average Precision, the main metric for this task, True Positive (TP) is
the set of the five True Positive metrics, and mean True Positive (mTP) is the mean True Positive
metric, representing a set of metrics that are not fundamental for the 3D object detection task but
can be useful in specific scenarios, such as assessing a sensor’s ability to accurately measure the

velocity of surrounding moving objects.

Half of the NDS is based on detection performance in terms of the mean precision for

each class, while the other half evaluates the quality of detections in terms of the mean True
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Positives. This enables a comprehensive evaluation of the detection models’ capabilities in
relation to different aspects of the nuScenes scenes. Additionally, to prevent the error metrics

from exceeding 1, each metric is bounded between 0 and 1 in the NDS calculation formula.

The TP metrics used by the nuScenes dataset are calculated independently for each class
and represent the average of the cumulative average at each recall level achieved above 10%. If a
recall of 10% is not reached for a given class, all TP errors for that class are defined as 1. The

defined TP metrics are:

The evaluation metrics include the Average Translation Error (ATE), which represents
the Euclidean distance of the center in 2D, measured in meters. The Average Scale Error (ASE)
is computed as 1 —IoU after aligning the centers and orientation. The Average Orientation Error
(AOE) is defined as the smallest yaw angle difference between the prediction and the ground
truth, measured in radians; it is evaluated over 360 degrees for all classes except barriers, where
it is considered only over 180 degrees, and for cones, it is ignored. The Average Velocity Error
(AVE) corresponds to the absolute velocity error in m/s, but it is not considered for barriers
and cones. Lastly, the siglaAAEAverage Attribute Error is calculated as 1 — acc, where acc
represents the attribute classification accuracy, and similar to AVE, the attribute error for barriers
and cones is ignored. All errors are greater than 0, but note that for translation and velocity errors,

the errors have no upper limit and can take any positive value.

4.3 Materials and Resources

For the development of this thesis, we used the source code of BEVFusion, available
online on GitHub'. BEVFusion was entirely developed using mmdetection3d, an open-source
object detection toolbox based on PyTorch 1.8. On the BEVFusion page, there was a means to
replicate the original development environment in terms of software through a Dockerfile, which
allowed the creation of a Docker container with all the necessary packages and dependencies to

run the original algorithm.

As for the hardware, we will use a desktop computer equipped with a Ryzen 7 2700
processor running at 3.2 GHz, 64 GB of DDR4 RAM at 3000 MHz, and an Nvidia RTX
4090 graphics card. The task explored in this thesis is heavily GPU-dependent, making a more
powerful processor than the one mentioned less critical. However, the GPU configuration is
modest compared to the one used in BEVFusion (where 8 Nvidia A100 GPUs were employed),
which will result in considerably longer training times and will require modifications. Thus,
testing a wide range of specifications or parameters on the models will not be feasible due to the

time required to train each one.

' <https://github.com/mit-han-lab/bevfusion>
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4.4 Evaluation

The performance evaluation of the proposed models was conducted on the nuScenes val-
idation set, considering each of the relevant metrics. The most important metrics for comparison
were mAP and NDS, which were used for 3D Object Detection tasks. The primary metric for the
segmentation task was mloU.

The mAP metric is widely used in object detection tasks, including 3D object detection.
It calculates the AP across different recall levels for each class, taking into account both the
precision and recall of the model. For 3D object detection, mAP is computed by considering the
precision of the predicted bounding boxes, comparing them to the ground truth annotations. A
higher mAP value indicates that the model is better at detecting objects accurately and with fewer
false positives. In the context of nuScenes, mAP is computed for each object class, considering
the 3D bounding box predictions.

For the segmentation task, mloU is the primary metric used. It measures the overlap
between the predicted segmentation mask and the ground truth mask for each region of interest.
Specifically, mIoU is calculated as the intersection of the predicted and ground truth areas
divided by their union. A higher mloU score indicates better performance in segmenting the
relevant regions. For this thesis, the regions of interest considered in the segmentation task

include drivable area, pedestrian crossing, walkway, stop line, car park area, and divider.

Only the models developed in this thesis were included, including the BEVFusion model

trained with the necessary adaptations to run on a single 24GB GPU.

For the LiDAR modality, the backbone used was the one provided by the BEVFusion
author, while for the image modality, the ResNet50 backbone was obtained from another source
but pre-trained on the nuScenes dataset. The nuScenes dataset considered only 10 classes
for the object detection task, following the same criterion adopted by BEVFusion: car, truck,

construction vehicle, bus, trailer, barrier, motorcycle, bicycle, pedestrian, and traffic cone.

For the segmentation task, the following regions of interest will be considered: drivable
area, pedestrian crossing, walkway, stop line, car park area, and divider. These regions are
particularly important for understanding the environment and will be used to evaluate the
performance of the segmentation models.
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CHAPTER

RESULTS

In this chapter, we present the results obtained for the evaluated models in both 3D
object detection and segmentation tasks. For each task, the models were specifically trained to
perform only that task. In other words, a model trained for 3D object detection only performs 3D
detection, while a segmentation model was exclusively trained for segmentation. Although both
models share the same backbone and attention modules, the distinction lies in the specific task

head appended to the end of the BEVFusion processing pipeline.

The original BEVFusion code, provided by the authors in the official repository, was
used to train the models. However, some modifications were necessary to enable training and

execution on the hardware available for this study.

For 3D object detection, all models were trained for six epochs with a learning rate of
1073 and a batch size of 2. This contrasts with the configuration used by the original authors,
who employed a learning rate of 10~* and a batch size of 4. Consequently, the results obtained
in this study differ from those reported by the original authors. The image backbone used was a
ResNet50 pre-trained on the NuScenes dataset. Under these conditions, each model required

slightly more than two days to train, with VRAM usage averaging around 20 GB.

For segmentation, the models were trained for 20 epochs using a ResNet50 backbone
pre-trained on the NuScenes dataset. The batch size was reduced from 4 to 2, but the learning
rate remained consistent with the original implementation provided by the authors. Each model
took approximately seven days to train under these conditions, with VRAM usage averaging
around 22 GB.

For all models incorporating dropout, a probability of 25% was applied to randomly zero
out elements in the input. No hyperparameter tuning was performed due to the significant time

required for training.

Table 1 presents the results obtained for the 3D object detection task. The abbreviations
used in the table are defined as follows: CA refers to the use of the Channel Attention Module,



82 Chapter 5. Results

cSE stands for Spatial Squeeze And Channel Excitation, SA denotes Spatial Attention, SSE
indicates Spatial Squeeze and Excitation, and scSE represents the combined Spatial and Channel

Squeeze and Excitation.

Among the evaluated models, the cSE approach demonstrated the highest performance in
the two most critical metrics for this task: mAP and NDS. Specifically, the cSE model achieved
an mAP of 0.6606, representing a performance gain of 0.732% compared to the baseline
BEVFusion model, which achieved an mAP of 0.6558. Following the c¢SE approach, the CA
model, another channel-focused mechanism, achieved the second-best mAP among the evaluated

methods.

In the NDS metric, the cSE model also achieved the highest score, with 0.6980, marking
an improvement of 0.374% over the baseline BEVFusion, which scored 0.6954. Similar to the
mAP results, the Channel Attention model ranked second in NDS performance, further validating

the effectiveness of channel-based methods.

Compared to the original BEVFusion model trained with the SwinTransformer, as
reported by its authors, a mAP of 0.6852 and an NDS of 0.7138 were achieved, representing
performance differences of 3.6% and 2.2%, respectively. It is worth noting that in related studies
(HONORATO; WOLF, 2024), the BEVFusion model trained with the SwinTransformer using
a setup similar to this work produced comparable results to those obtained here. This suggests
that the slightly lower performance observed in this study may be attributed to the limitations

imposed by using a lower batch size of and a higher learning rate.

Regarding the FPS metric, most models, including cSE, maintained an average inference
rate of 7.9 frames per second. However, Channel Attention and CBAM, which also employs chan-
nel attention, fell slightly below this average. Nevertheless, their FPS values remain comparable
and within acceptable limits relative to the other models. The FPS calculation was performed by

running inference on 2000 images and then averaging the results.

Table 1 — Performance metrics for different models. Metrics with 1 indicate higher is better, and those
with | indicate lower is better.

Model mAP (1) mATE () mASE () mAOE () mAVE () mAAE (|) NDS (1) FPS (img/s) (1)
BEVFusion  0.6558 0.2931 0.2559 0.3297 0.2607 0.1861 0.6954 7.9
CA 0.6593 0.2921 0.2542 0.3277 0.2637 0.1859 0.6973 7.6
cSE 0.6606 0.2903 0.2544 0.3264 0.2663 0.1859 0.6980 7.9
SA 0.6594 0.2919 0.2538 0.3377 0.2635 0.1863 0.6964 7.9
sSE 0.6584 0.2927 0.2546 0.3317 0.2684 0.1851 0.6960 7.9
CBAM 0.6597 0.2907 0.2549 0.3391 0.2644 0.1860 0.6963 1.5
scSE 0.6591 0.2925 0.2546 0.3327 0.2603 0.1849 0.6970 7.9

In Figures 15, 16, and 17, a comparison is presented between the BEVFusion model and
the cSE variant across three different scenes. Each figure is organized into three rows: the top
row shows the ground truth annotations, the middle row illustrates the results obtained using the

BEVFusion model with cSE for multi-sensor fusion, and the bottom row presents the outputs
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BEVFusion
Figure 15 — Visual comparison of 3D object detection results betweencSE and BEVFusion, using the
Ground Truth as reference.

of the original BEVFusion model. On the left side of each image, the results for the six camera

views are displayed, while the right side shows the corresponding LiDAR outputs.

Both models exhibit certain limitations when compared to the ground truth annotations.
Common issues include false positives, where bounding boxes are assigned to non-existent
objects, and instances where multiple bounding boxes are allocated to a single object. These chal-
lenges underscore the complexity of accurately detecting objects in multi-modal environments. It
is important to note that the IoU threshold used to determine valid bounding boxes was provided
by the original BEVFusion authors in the official repository. Additionally, the non-maximum
suppression algorithm employed to reduce redundant bounding boxes was also sourced from

their implementation.

Visually, the differences between the two models are not immediately apparent, as both

exhibit similar patterns of inaccuracies. This observation aligns with the quantitative results,
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BEVFusion
Figure 16 — Visual comparison of 3D object detection results betweencSE and BEVFusion, using the
Ground Truth as reference.

where the performance gap between the two models was relatively small.

Table 2 summarizes the results comparing training time, training configurations, and per-
formance metrics using the original BEVFusion backbone, Swin Transformer, in two scenarios.
The first scenario presents the results reported by the authors, where training was conducted on
their hardware, although the exact training time was not disclosed. The second scenario evaluates
BEVFusion using our hardware, comparing Swin Transformer with ResNet50 enhanced by the

cSE attention mechanism, which achieved the best performance for this task.

Additionally, we observe that when using the RTX 4090—a high-performance GPU—there
was no difference in FPS between the models with ResNet50 and Swin Transformer. However,
when employing a less powerful GPU, such as the RTX 2070, a difference of 0.4 imgs/s FPS
was observed, corresponding to a 17.39% performance improvement. This suggests that in

computationally constrained environments, ResNet-based models offer superior efficiency at the
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BEVFusion
Figure 17 — Visual comparison of 3D object detection results betweencSE and BEVFusion, using the
Ground Truth as reference..

cost of a minor trade-off in key 3D object detection metrics.

As observed, there is a significant difference between the authors’ BEVFusion results
and ours. However, when comparing BEVFusion trained on our hardware, the difference is less

pronounced. This suggests that tuning the training parameters could potentially lead to improved

performance.
Table 2 — Configuration and performance of models during training.
Model Backbone mAP NDS Learning Rate Batch Size VRAM Training Time FPS (4090) FPS (2070)
BEVFusion Swin Transformer 0.6852 0.7138 10-% 4 80 GB - 79 2.3
BEVFusion Swin Transformer 0.6542 0.6922 1073 1 18 GB 6 days 79 2.3
BEVFusion ResNet50 0.6558 0.6954 103 2 20 GB 2 days 7.9 2.7
cSE ResNet50 0.6606 0.6980 1073 2 20 GB 2 days 7.9 2.7

Table 3 summarizes the performance of the evaluated models in the segmentation task.

As observed, the cSE model consistently achieves the best results across most categories, except
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for Car Parking Area and Divider, where the CA model outperforms.

In terms of overall performance, the cSE model achieves the highest mloU, with an
average of 0.5868, closely followed by the Channel Attention model, which achieves an mloU
of 0.5854. This represents a 14.12% improvement over the baseline BEVFusion model, which
achieved a mean mloU of 0.5142. When compared to the original BEVFusion model reported by
its authors, trained using the Swin Transformer backbone and achieving an mloU of 0.6295, the
performance difference is approximately 7%. However, when the original BEVFusion model
with Swin Transformer was trained under our configuration, with the batch size reduced from 4

to 1, it achieved an mloU of 0.5932, reducing the performance gap to only 1.31%.

Table 3 — Average mloU Metrics by Category.

Model Drivable Area Ped Crossing Walkway Stop Line Car park Area Divider Mean
BEVFusion 0.7972 0.5069 0.5953 0.3782 0.3589 0.4487 0.5142
CA 0.8241 0.5509 0.6383 0.4394 0.5600 0.4997 0.5854
cSE 0.8331 0.5518 0.6454 0.4472 0.5492 0.4940 0.5868
SA 0.7963 0.5120 0.5944 0.3803 0.4036 0.4548 0.5236
sSE 0.7947 0.5183 0.6051 0.3834 0.3834 0.4605 0.5242
CBAM 0.8136 0.5443 0.6326 0.4234 0.5095 0.4905 0.5690
scSE 0.8288 0.5464 0.6436 0.4358 0.5091 0.4853 0.5749

The comparison of segmentation results between the cSE model and BEVFusion is
shown in Figure 18, with the Ground Truth serving as the reference. The columns are organized
as follows: the first column displays the Ground Truth, the second shows the results of the cSE
model, and the third presents the results obtained with the BEVFusion model. As can be seen,

the results are not perfect for either BEVFusion or c¢SE, but the cSE model is visibly superior.

The main weakness of both methods lies in their ability to segment distant details from
the vehicle. This is evident in the first figure (from top to bottom), where the cross street is not
detailed by either method, and in the second figure, where the upper area, which represents a

drivable region, is not well marked by BEVFusion and shows some flaws in cSE.

In the third figure, from top to bottom, on the upper-right side, BEVFusion fails to
segment the area correctly but performs better on the left side. In contrast, cSE segments the

right side well but leaves the left side incomplete.

In the fourth figure, BEVFusion marks a drivable region where none exists according
to the reference image. cSE also has a small failure in this area, but it is much less noticeable.
The key observation here is that both methods struggle to mark the yellow details present in the

reference image correctly.

Finally, in the last image, BEVFusion fails to segment the right boundary and does not
mark the yellow details found in the reference image. Meanwhile, cSE, although it does not
capture all the details fully, manages to mark most of them along with the red regions. However,

the purple details are not correctly represented by either method.
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It can be observed that, although neither model is perfect, the cSE approach produces
results that are significantly closer to the Ground Truth compared to BEVFusion. The cSE
model demonstrates greater consistency and precision in the segmented areas. In contrast,
the BEVFusion model exhibits more noticeable errors, particularly in boundary regions and

intersections.

Table 4 summarizes the efficiency metrics for segmentation. Using SwinTransformer,
a batch size of 1 consumed 20 GB of VRAM, while with ResNet50, it was possible to use a
batch size of 2 with a VRAM consumption of 22 GB. This suggests that, with a batch size of 1,
the estimated memory usage would be around 11 GB, representing a 45% reduction in VRAM
consumption. Additionally, the training time was reduced from 20 days to 7 days, marking
a 65% decrease. Regarding the main metric, mean Intersection over Union (mloU), models
using ResNet50 performed slightly worse, with a minor performance drop of only 1.08 % for
the CA attention mechanism compared to the BEVFusion baseline provided by the original
authors. However, when compared to the BEVFusion model trained with a batch size of 4, the
performance gap increased to 6.78 %, highlighting the significant impact of training configuration

on the final model performance.

Table 4 — Configuration and performance of models for segmentation.

Model Backbone mloU Learning Rate Batch Size VRAM Training Time
BEVFusion Swin Transformer 0.6295 1074 4 80 GB -
BEVFusion Swin Transformer 0.5932 10~4 1 20 GB 20 days
BEVFusion ResNet50 0.5142 1074 2 22 GB 7 days
cSE ResNet50 0.5868 1074 2 22 GB 7 days

In general, the cSE model consistently achieved the best performance across both tasks.
Notably, for the segmentation task, both the cSE and CA mechanisms yielded the highest
results. This variation in performance among channel-based attention mechanisms can likely be
attributed to the concatenation of sensor data being performed along the channel axis. Channel-
based attention enhances interdependencies between features at the channel level, effectively
identifying which channels are most relevant to the problem. This capability is a key factor

contributing to the superior performance observed in these models.

The channel-based attention methods demonstrated significantly better performance than
spatial attention methods, most likely because the attention mechanism is applied in the feature
space extracted from the sensors using deep learning models. In this space, "what" information
is present is more important than "where" it is located. It is possible that if the same attention
mechanisms were applied directly to the raw sensor signals, without prior feature extraction,
spatial attention would yield better results. Furthermore, combining both attention mechanisms,
as seen in hybrid approaches like CBAM or scSE, could potentially enhance performance beyond

what was achieved using only channel or spatial attention individually.
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Figure 18 — Visual comparison of segmentation results between cSE and BEVFusion, using the Ground
Truth as reference
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CHAPTER

CONCLUSION

This thesis addresses the rapidly evolving field of autonomous vehicles, with a specific
focus on visual perception. This domain is fundamental, as many other tasks in autonomous
driving rely heavily on accurate perception. The challenge tackled in this study pertains to
multi-sensory fusion. The objective was to optimize the fusion method of a state-of-the-art model
while simultaneously reducing its computational cost without compromising performance in 3D

object detection and semantic segmentation tasks.

In this study, several attention mechanisms were explored, including Channel Squeeze
and Spatial Excitation, Spatial Squeeze and Channel Excitation, Concurrent Channel and Spatial
Squeeze and Excitation, Channel Attention, Spatial Attention, and CBAM. While these mecha-
nisms were originally designed to enhance the performance of CNN in tasks like classification

and segmentation, their innovative application here lies in their adaptation for sensor fusion.

Additionally, dropout regularization was applied before feeding data into the attention
modules. This approach forces the model to become more robust during training, reducing

overfitting and enhancing performance when dealing with sensor failures.

This thesis builds upon the original implementation of BEVFusion provided by its
authors. However, due to hardware limitations encountered during this study, several adjustments
were necessary. The first modification, aligned with the goals of this thesis, was to replace the
original image backbone, Swin Transformer, with the simpler ResNet50. Furthermore, given the
24GB VRAM limitation of the available GPU, the batch size had to be reduced from 4 to 2. For
the 3D object detection task, the learning rate was decreased by a factor of 10, whereas for the

segmentation task, the original learning rate was retained.

Experimental results on the NuScenes dataset, the same used by the original authors,
demonstrated a performance improvement of 0.732% in mAP and 0.374% in NDS for the 3D
object detection task in the best-performing model. For the semantic segmentation task, there

was a significant 14.12% performance improvement compared to the base BEVFusion model,
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using ResNet50 as the image backbone.

The Channel Squeeze and Spatial Excitation mechanism emerged as the best-performing
model across both tasks. Particularly in the segmentation task, the top two models were those em-
ploying channel attention mechanisms. This suggests that channel-based attention is particularly
effective in scenarios where sensor fusion occurs along the channel axis. In this configuration,
data from different sensors are concatenated along the channel dimension. Channel attention
mechanisms likely enhance the model’s ability to identify the most relevant information from
each channel. This is consistent with how these mechanisms generate attention maps, selectively
highlighting specific channels corresponding to camera and LiDAR inputs, which improves

segmentation performance.

An interesting avenue for future research, inspired by this finding, is the application of
channel-wise dropout. After sensor fusion, the data dimensionality is R80*30%336 By applying
dropout to zero out entire channels, the model could potentially become even more robust,

learning to handle scenarios where data from specific channels are entirely missing.

Regarding computational efficiency, the ResNet50-based model achieved a 65 % reduc-
tion in processing time, a 45% decrease in memory consumption, and a 17.91% increase in
FPS. While there was some performance loss, the efficiency gains outweigh this trade-off. An
interesting finding is that model performance is highly influenced by training configurations.
A model trained on an RTX 4090 with a batch size of 1 was outperformed by the same model
trained on an A100 with 80 GB of VRAM using a batch size of 4.

When using the RTX 4090, there was no difference in FPS between the Swin Trans-
former and ResNet50 models. However, on a less powerful GPU, such as the RTX 2070, the
FPS difference was 0.4 imgs/s, representing a 17.39% performance gain. This suggests that in
resource-constrained environments, ResNet50 offers a more efficient alternative while maintain-

ing comparable detection performance.

In conclusion, this thesis successfully achieved the goal of reducing the computational
cost of the model while attaining a substantial performance gain compared to the base BEVFusion
model with a less computationally intensive backbone. Compared to the original backbone,
SwinTransformer, the best-performing model in this study achieved results only 1.31% below its
performance. This is a positive outcome, considering a 3.3-fold reduction in training time and

improved compatibility with less powerful hardware for inference.

In future work, we can explore additional attention mechanisms, such as local channel
attention and global channel attention, as well as ways to combine them. Additionally, we can
investigate the use of attention mechanisms in models with Swin Transformer. Another possible
research direction is to analyze the differences between spatial attention mechanisms and channel
attention mechanisms across different scenarios and applications. For instance, we could apply

attention mechanisms directly at the sensor level, without any prior preprocessing, to assess
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whether spatial attention performs better in this setting.
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APPENDIX

PUBLISHED WORKS

During the course of this master’s research, four papers were produced, three of which

were accepted for publication.

The first paper, "Enhancing 3D Object Detection in Autonomous Vehicles: Multi-Sensor
Fusion with Attention Mechanisms" (HONORATO; WOLF, 2024), presents results obtained
using the original BEVFusion backbone combined with attention mechanisms that demand
greater computational resources. These results were excluded from the final version of this thesis

due to the extended training time required.

The second paper, "Out-of-Distribution Object Detection in Autonomous Vehicles with
YOLO Model" (HONORATO et al., 2024), also focuses on autonomous vehicles but is not
directly related to the main topic of this thesis. It addresses Out-of-Distribution (OOD) detection
in object recognition, driven by a curiosity to explore a relatively underexplored area with strong

potential to improve autonomous perception systems.

The third paper, "Improving U-Net with Attention Mechanism for Medical Image Seg-
mentation Applications" (HONORATO et al., 2025), investigates the application of the same
attention mechanisms employed in this work to enhance segmentation performance in medical

imaging tasks. This paper was recognized with the Best Student Paper Award at the conference.

The details and abstracts of the three published works are presented below:

Enhancing 3D Object Detection in Autonomous Vehicles:
Multi-Sensor Fusion with Attention Mechanisms
Authors: Eduardo Sperle Honorato; Denis Fernando Wolf

Published in: 2024 Latin American Robotics Symposium (LARS)

Abstract: In the realm of Autonomous Vehicles (AVs), effective 3D object detection is
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paramount for ensuring safe navigation in complex environments. The integration of data from
multiple sensors, such as cameras and LiDAR, presents challenges in accurately perceiving the
surrounding environment. In this paper, we propose several enhancements to the BEVFusion
model, a state-of-the-art approach for fusing camera and LiDAR data for 3D object detection
in AVs. Specifically, we investigate the integration of attention mechanisms to improve sensor
fusion within the BEVFusion framework. Through extensive experiments on the nuScenes and
nuScenes mini datasets, the best-performing model from our proposed approaches achieved a
relative improvement of 1.2% in mAP and 0.6% in NDS compared to the baseline model. These
findings highlight the effectiveness of our attention-based fusion strategy in enhancing detection

accuracy, making it a robust solution for real-world autonomous driving scenarios.

Out-of-Distribution Object Detection in Autonomous Ve-
hicles With YOLO Model

Authors: Eduardo Sperle Honorato; Mariana Aya Suzuki Uchida; Thiago Henrique
Segreto Silva; Denis Fernando Wolf

Published in: 2024 Latin American Robotics Symposium (LARS)

Abstract: This paper addresses the challenge of detecting Out-of-Distribution (OOD)
objects in autonomous vehicles, focusing on identifying and localizing objects absent from the
training data. We propose a novel method that leverages the existing object detection model,
YOLOVS3, to detect OOD instances without requiring model retraining or additional datasets. Our
approach computes dissimilarity scores from class confidence outputs to effectively distinguish
OOD objects in cropped images. Experiments on popular autonomous vehicle 2D object detec-
tion datasets demonstrate that, in a straightforward scenario, our method significantly reduces
the False Positive Rate at 95% True Positive Rate while maintaining a comparable Area Under
the Receiver Operating Characteristic curve (AUROC) to baseline models. In more challenging
scenarios, our method outperforms competitors, demonstrating superior robustness. Key contri-
butions include the proposed OOD detection method and the methodology for identifying OOD
object instances.

Improving U-Net with Attention Mechanism for Medical

Image Segmentation Applications

Authors: Eduardo Sperle Honorato; Mariana Aya Suzuki Uchida; Agma Juci Machado
Traina; Denis Ferando Wolf Abstract: Medical image segmentation plays a vital role in numer-
ous applications and has gained significant attention since the introduction of the U-Net model,

which enabled convolutional neural networks to achieve high performance with manageable
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computational costs. Recently, attention mechanisms have emerged as a promising approach
to enhance model performance by emphasizing relevant features while suppressing irrelevant
ones. This study explores the integration of channel and spatial attention mechanisms into the
U-Net architecture, evaluating their impact on segmentation performance and computational
cost. Experiments conducted on six public medical imaging datasets demonstrated performance
improvements, with Intersection over Union (IoU) gains ranging from 1.62% to 33.66% com-
pared to the original U-Net. These results highlight the potential of attention mechanisms to

significantly improve the efficiency and effectiveness of medical image segmentation models.
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